
A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Computer Science and Engineering

in the Graduate School of

the University of Aizu

Robust and adaptive polygonization of implicit

curves and surfaces.

by

Kazuhiro Mochizuki

February 2004

The thesis titled

Robust and adaptive polygonization of implicit curves and surfaces.

by

Kazuhiro Mochizuki

is reviewed and approved by:

Main referee
Associate Professor Date

Michel Cohen
Professor Date

Gennadiy Nikishkov
Assistant Professor Date

Roman Ďurikovič

The University of Aizu

February 2004

Contents

Chapter 1 Introduction 1
1.1 Problem Definition . 3
1.2 Approach . 5
1.3 Thesis Structure . 6

Chapter 2 Related Work 7
2.1 Spatial Partitioning Method . 7

2.1.1 Exhaustive Enumeration . 7
2.1.2 Continuation Method . 9

Piecewise Linear continuation method 9
2.1.3 Subdivision Method . 10

2.2 Ad hoc polygonization . 11
2.2.1 Shrinkwrap Polygonization 11
2.2.2 Predictor Corrector Continuation Method 12
2.2.3 Particle-based Polygonzation 12

2.3 Other rasterization solutions . 12
2.3.1 Adaptive Solution . 13
2.3.2 Robust Solution . 13

First Approach for Space Pruning 13

Chapter 3 Polygonization Framework 15
3.1 Basic procedure in implicit surface visualization 15
3.2 Details of polygonization steps . 16

3.2.1 Preprocessing step . 16
3.2.2 Dividing Cell step . 17
3.2.3 Vertex Calculation step . 19
3.2.4 Building polygon (line) step 21

Polygonization based on cell vertices value analysis 21

Chapter 4 Interval Analysis algorithm 22
4.1 Interval Arithmetic . 22

4.1.1 Definition of Interval Arithmetic and Results 22
4.1.2 Over-conservatism Problem in IA 23

4.2 Affine Arithmetic . 24
4.2.1 Definition of Affine Arithmetic 24
4.2.2 Conversion Between IA and AA 25

iii

4.2.3 Affine Form Computation 25
4.2.4 Mathematical Operations with Affine Arithmetic. 26

Affine Operation . 26
Non-Affine Operation . 26
Multiplication and Square Root 27

4.2.5 Extension for procedural function and mathematical function . 29
4.2.6 Example of Affine Computation 30
4.2.7 Comparison of Affine Arithmetic and Interval Arithmetic . . . 31

Chapter 5 Adaptive Calculation 33
5.1 Curvature Estimation in Conventional Way 33

5.1.1 The Finite Differences Approach 33
5.1.2 Automatic Differentiation 34

5.2 Adaptive solution in our method . 35
5.2.1 Implicit Linear Interval Estimations (ILIEs) 35
5.2.2 Extended ILIEs . 38
5.2.3 Curvature analysis with ILIEs 38
5.2.4 Cell Pruning . 39
5.2.5 Intersection tests . 39

Chapter 6 Results and Discussion 41
6.1 Result of Two-Dimensional Polygonization 41

6.1.1 Three dimensional polygonization result 55
6.2 Discussion . 66

6.2.1 Discussion in two dimensional case 66
6.2.2 Discussion in three dimensional case 68

Chapter 7 Conclusion 70
7.1 Summary . 70
7.2 Conclusion . 70
7.3 Future Work . 71

References 72

iv

Acknowledgement

I wish to thank Dr. Michael Cohen for his support and encouragement. I wish
to express my appreciation to Associate Professor Carl Vilbrandt and Dr. Alexander
Pasko in Hosei University for his excellent advice and diligent efforts to guide me
through this project.

I would like to thank the thesis reviewer, Dr. Roman Ďurikovič and Dr. Gennadiy
Nikishkov for their valuable and constructive comments. I am grateful to Mr. Yuichiro
Gotou in IT Research Institute at Kanazawa Institute of Technology for his advice and
support on implementation. I would like also to thank Jody Vilbrandt for excellent
support in writing this paper.

I would like to thank Mr. Juhn Yamadera and Dr. Michael Cohen again for giving me
the opportunity to attend the academic conference, SIGGRAPH 2003. Some ideas in
this paper are inspired in that conference.

I want to thank my friends in the Computer Arts Laboratory, especially Mr. Katuo
Fujiwara and Mr. Turlif Vilbrandt, for many exciting discussions, and I would like
to thank again Associate Professor Carl Vilbrandt and Dr. Alexander Pasko for their
tramendous support in writing this paper.
Finally, I would like to thank professors and officers of the University of Aizu for
providing an excellent research atmosphere at the university.

v

Abstract

This paper suggests new polygonization of implicit curve and surface based on oc-
tree decompostion methods. We get Robust and Adaptive polygonization with Affine
Arithmetic calculation and Implicit Linear Interval Estimations or Extended Implicit
Linear Interval Estimations. By our method, reduction of computation, decrease mem-
ory consumption and increase the polygonzation accuracy are achieved.

keywords: Affine arithmetic, decomposition method, Octree-based structure, Implicit
Linear Interval Estimations, Adaptive polygonization, polygonization, crask problem.

Chapter 1

Introduction

For describing geometric objects, many types of geometric representation are used,
but mostly used geometric representations are: implicit representation and parametric
representation. This paper is mainly concerned with implicit representation and its
visualization with polygonization.

Implicit representation models are widely used in engineering, computer graphics,
and mathematics. Implicit representation is defined with a field function as described
in the form: ���������
	�� ������

(1.1)

For two dimensional objects, the above formula is rewritten as
��������������	

, and for
three dimensional objects as

����������������� 	
. For explaining this category’s benefit, we

discuss this implicit representation formula compared with the other category, para-
metric representation. This formula may differ in appearance from the parametric
representation formula. For example, the parametric and implicit expressions for a
unit circle shown in the figure below differ in their properties, although they describe
an identical shape.

y

x

t

p

Figure 1.1: Simple circle.

Equiangular parametric function:! � ���#"��$�%�#&('*)+�,"��(��).-#/$�,"����"0213	���4657�
Non-equiangular parametric function:! � ����89�$�:�#;<�>=@?A8>BC�9D��E=GF�8>BH�H�H4689D��>=GF�8>BH���8I01J?�=*�K=ML
Implicit function:! � ���������������$�N�OB�FP�QBR?S=

1

From this example diagram, Figure 1.1, and the formula, the advantage and
disadvantage of implicit representation may be understood. The main differences be-
tween parametric representation and implicit representation are the function argument
types and their results. Implicit representation functions use coordinate arguments and
yield level set values, which means the level set value of the cell’s vertex vertex in rela-
tionship to th e implicit object where it is: inside (when

���������������UTV	
), outside (when�������������@�XW:	

) or on the surface (when
���������������Y�Z	

). Parametric representation
functions uses linear ratio, and the result is boundary coordinates. Therefore, implicit
representation has an advantage in distinguishing any point as inside, outside or on
the surface, but it is difficult to distinguish the surface and to manipulate local surface
deformation. On the other hand, parametric representation has an advantage in visual-
izing an object, so most graphic applications use parametric representation. However,
it is difficult to distinguish a point because of lack of information. For example, some
extra calculation is required in morphing, blending or representing a soft object. Some
researchers have already suggested Boolean operation with points [74][75], and in that
application it is possible to use Boolean operation with parametric function in a simple
model, but the idea is not used in a complex model. Therefore, implicit representation
is gradually increasing in popularity in computer graphics, but visualization technique
improvement is required.
In most applications, polygonization, or tessellation, is required for visualization. A
polygon mesh is the one of the simplest forms of surface description and existing
graphic systems, such as OpenGL, have special support for polygonal models, spe-
cially for triangular meshes. Although there is more sophisticated visualization de-
scription, such as B-splines or NURBS, polygonization algorithm is always required
to describe three dimensional object. However, this task is complex for implicit rep-
resentation. Previously, many researchers have tried to improve on such algorithms,
and this thesis will also try to describe a solution for polygonizational visualization for
implicit representation.

For implicit surfaces, any geometric model is defined by mathematical functions or
discrete volumetric sets, eg. meta-ball or blobby object [7]. In this thesis, procedural
mathematical functions, especially in the form of HyperFun models [46] are consid-
ered. Basically an implicit function is a mathematical method providing for the precise
description of any object or any number of an object’s measurable or imaginary phys-
ical attributes. However, the surface geometry as well as the other physical attributes
of an implicit object are defined in a compressed form of mathematical notation that
must be computationally unfolded before we can access and visualize the geometric
information of an implicit object.
Consequently, the visualization of an implicit object requires a root or basic funda-
mental computational tool. A black box where in one side an implicit object is input
and the other side of the black box outputs geometric information about the implicit
object’s surface needed for visualization providing for interactive modeling.

In this paper, we consider the adaptive polygonization for procedural mathematical im-
plicit representation, and suggest one framework for polygonizing implicit functions
in a robust way. In current methods used for polygonization, the total time of computa-
tional throughput and required memory are increased by a factor of eight in proportion

2

to an incremental increase in the accuracy of the surface information required for var-
ious applications.
Accordingly, this research proposes an adaptive polygonization procedure that predicts
the implicit surface contour and wisely steps the procedural analysis of the geometry
along the surface of the implicit object. This adaptive approach will provide for in-
cremental increase in accuracy without the factor of eight increase in computational
resources.

1.1 Problem Definition
In conventional polygonization framework, described in related work in chapter 2,
memory requirement and total throughput is increased in proportion to required poly-
gon fineness. The typical case, if user require doubled fineness in polygonization,
exhaustive enumeration (Marching Cube [8]) calculation required octuple memories
and calculation. On the other hand, continuation method [11] required quad memories,
but they have some limitation that is not acceptable in discrete surface polygonization.
So the problem of an octuple factor in computational resources of current conventional
polygonization in proportion to any increase in geometrical fitness of the surface of an
implicit object is critical to the general acceptance and application of implicit function.
Thus, this is a basic problem that is worthy of research, even if the predictions of the
continual doubling of computational resources is true.
For improving this problems, this paper suggest octree base polygonization framework.
Our polygonization and thesis keywords are Robust and Adaptive. Both keywords re-
late to the polygonization problem in octree base decomposition polygonization.

Robust is related to the truncation problem described below. In this thesis, by Robust,
we mean to guarantee cell detection whether the cell is intersected by an implicit ob-
ject or not. The goal of this research is to guarantee the implementation of a robust and
adaptive polygonization method that will produce the same quality of surface fitness
as the current exhaustive enumeration method does with less total throughput.

[Truncation problem
Each cell’s level set value of vertex decides which cell is intersected by implicit
surfaces. However, level set value of vertex information is ambiguous in de-
ciding intersection. For example, sample cells below are never recognized as
intersected cells. It is possible to detect such sample cells by decreasing cell size
or dividing each cell into 4 sub-cells. However, this task would need to be done
by the user manually, because the program does not know which cells really in-
clude a surface. Besides that, our polygonization framework uses decomposition
method, and straddling detection in implicit curves is the most important criteria.
So, this paper focuses on the straddling detection process.

3

+ -+

++ - -

--

- -

-

Figure 1.2: Ambiguity cells.

Adaptive means each cell fitness or level of local decomposition is controlled by
local implicit surface curvature calculations based on the results of previous surface
calculations.

1. Useless calculation problem
Users are required by the polygonization program to set the cell size or dividing
number of the bounding box, which is related with polygon size. In some cases,
the user requires a quite fine surface, and extremely tiny cells are made in the
cell creation step and, for each cell vertex, as a function is calculated; each cell
is tested with its values whether it includes a surface or not. However, some tests
are useless, because many parts do not include any surface. So, in the case of
many fine polygons, most of the calculation is not directly related with the sur-
face. In below diagram, a simple example is shown; left is the conventional way,
and to the right is a better way. In some conventional solution, some extra com-
putation is done because of no relation between cell decomposition calculation
and each calculation result.

Figure 1.3: Cell size detection.

2. Adaptive computation problem
At first, typically example in this problem is described. In conventional methods,
a simple line is achieved as show in image on the left; the result is made from a
collection of short lines. A more suitable representation of a straight line is the
right image, one simple straight line. In some conventional solution, long line or
plates is made by total segments, and there is no difference in the quality. Such

4

calculation is a waste and could happen in curves. The ideal solution is that tiny
cells lie in high curvature area, and large cells lie in low curvature area.

Figure 1.4: Simple line sample: y = x

The objective of our research is to suggest a more Robust and Adaptive polygoniza-
tion which avoids the aforementioned problems with low computation compared with
conventional technique.

1.2 Approach
To implement the above concept, we employ the hierarchical decomposition method
and recursive subdivision method which we call Adaptive Decomposition Framework
(ADF), with octree and quadtree data structure which describe procedural implicit
functions. The hierarchical decomposition method is the basic framework for our
polygonization program. Other techniques are uniquely gathered within the basic de-
composition framework. The disparate techniques are used in a collaborative manner
in order to achieve the goals of this research. The decomposition method with two
collaborative techniques are listed below.\ Decomposition method

Basic framework of our polygonization program. This method is selectively and
recursively used to decompose the original cell into subcells. The following two
techniques are used within this basic framework.[Interval analysis
This is used for analyzing the space defined by the bounding box, whether each
cell includes an implicit surface or not. If cells are intersected and the cell size is
not enough to describe the surface, the cells are subdivided into eight sub-cells
and checked recursively until the cell is of a size that is sufficient to describe
the implicit surface locally or where the curvature value in the cell is above the
threshold, providing Robustness in surface identification.[Curvature analysis
This is the best criteria for adaptive polygonization. Conventionally, the curva-
ture value is calculated from the derivative value of the implicit function, but we
use another solution, Implicit Linear Interval Estimations. With this technique,
a new unique adaptive calculation is achieved.

5

Interval analysis and Curvature analysis within the basic framework of the decom-
position method constructs our main research approach using ADF to achieve Robust
and Adaptive polygonization. The details of our approach are expanded as outlined in
the thesis structure section.

1.3 Thesis Structure
The rest of the thesis is constructed as follows. Chapter 2 presents some conventional
methods for visualization of implicit surface. Chapter 3 describes the basic struc-
ture and idea of hierarchical decomposition method, which is the basic framework for
our polygonization method; the role of interval analysis and curve analysis are also
mentioned. Chapter 4 discusses in detail the concept and calculation of the Interval
Analysis techniques. Chapter 5 details Curvature Analysis solution with Implicit Lin-
ear Interval Estimations, and some calculation results, computation time comparison
with conventional decomposition methods, and discussion with the reulsts are done in
Chapter 6. Chapter 7 concludes this thesis and presents some future works.

6

Chapter 2

Related Work

In this section, some conventional methods for polygonizaiton of implicit curves and
surfaces are described.
Generally, polygonization is classified into two steps, according to Bloomenthal [78]:
sampling and constructing. Sampling means deciding points which may exist on the
surface. Constructing means the creation of a data structure representing a polygonal
approximation interpolating the sampled points. Sampling phase method is classi-
fied into two classes: orderly sampling and unsteady sampling. Orderly sampling is
normally made from cells, as described in] 2.1 below. Then, the constructing phase is
done in each cell. Alternatively, unsteady sampling is directly related with constructing
phase, because this method is designed for making appropriate points for constructing
polygons, as described in section 3.2.

2.1 Spatial Partitioning Method
Spatial partitioning divides space into semi-disjoint cells which enclose the implicit
surface. Each cell is utilized to make vertices which may be on the implicit surface.
After that, the construction phase makes polygons from the vertices. Spatial partition-
ing is not only characteristic of polygonization, but for example, ray tracing algorithms
use this scheme for detecting intersection of ray and surface. This idea is found in many
references [15] [20] [41].

There are three principal types of partitioning methods: exhaustive enumeration, con-
tinuation, subdivision. By this classification, most polygonization is characterized. In
the following sections, these three partitioning methods are described.

2.1.1 Exhaustive Enumeration
This type of spatial partioning is used in the well known conventional polygoniza-
tion method, named Marching Cube [8], which was originally designed for making
polygonal 3D models from medical data sets, such as computed tomography (CT) and
magnetic resonance (MR). The algorithm based on hyperbolic arcs [13]can be used
to automatically resolve the ambiguous cases.Usually, the cube is divided into a uni-

7

form grid, the number and distance of adjacent sample points are the same. In most of
cases, a rectilinear uniform axis-aligned grid is utilized. After making cells, intersected
cells are determined by enumeration examination between all cells, and those cells are
polygonized. Because each cell’s vertex is stored, the detection phase is very fast. For
detecting the vertex position, linear interpolation is normally adopted.
A more detailed process of Marching cubes or the basic concept of exhaustive enumer-
ation is described as follows:

1. Divide the box space for making cells with axis-allied grid.
The box space, called Bounding Box, is divided into axis-aligned small cubic
cells as shown in Fig. 2.1.

Divide

Figure 2.1: Divide bounding box.

2. Intersected cells are detected from the analysis of the cell’s level set values of its
four vertices. The three possible set values of a positive number, 0, or a negative
number are obtained by the evaluation of the implicit object’s function which
defines it. If the set value is a positive number, the point is inside the implicit
object. If the set value is zero, the point is on the surface of the implicit object,
and with a negative set value, the point is outside of the implicit object. If the
set value of the four vertices of one given cell are all positive or all negative,
then the cell is fully contained within, or in the case of the latter, does not touch
the implicit object. Therefore, logically, cells with all positive or all negative set
values for their four vertices can not be intersected by the surface of the implicit
object. Whereas intersected cells have both positive and negative set values for
their vertices or a change in sign between their vertices.

3. In this phase, the point of intersection is achieved with linear interpolation be-
tween the vertex values of the cells vertices that have a change of sign between
their level set values. The points of intersection are used to create polygons
representing the implicit surface contained within each intersected cell detected
with the method above. The intersection or polygonization representing the im-
plicit surfaces intersecting a cell has only fourteen basic patterns or ways the cell
can be intersected by the implicit surface. Thus most polygonizers use an index
or look up table for the creation of the polygons to represent the implicit surface.

The above steps are the main concept in Marching Cube, and each of these processes
has already been modified by some researchers. Hexagonal sampling, instead of unit
sampling described in the first process, is suggested in [67][71]. To improve the speed
of second process, a table may be used to polygonize cells [6]. Details concerning
the generation of the index table are given in [11] and implemented in [78]. By this
technique, efficiency of the second process is improved by 30% [57]. Hans Christian

8

Hege presented extended non-binary classification Marching Cube [38]. He improved
the third step for non-binary polygonziation. By this extension, it is possible to make
a more accurate triangulation with Boolean operations.

There have been so many improvements for Marching Cube, but an inherent weak-
ness, efficiency, is not improved. For example, if the linear resolution of the grid is
100, then the total number of cells is

=.	*	�^_�%=@��	@	*	���	@	@	
. Consequently, memory man-

agement becomes a significant burden. In that case, Jules Bloomental suggests using
the continuation method, described in the next section.

2.1.2 Continuation Method
Incremental extension of surface polygons is the basic idea for the continuation method.
This technique is usually divided into two classes: the predictor corrector (PC) and
piecewise linear (PL) [78]. However, predictor correct method does not use cells, so
in this section only piecewise linear is described, and the predictor corrector method is
explained in a later section, ad hoc algorithms.

Piecewise Linear continuation method

Piecewise linear approximation has been applied to implicit surfaces using cubic cells
[6][11] [33] and tetrahedras[69]. This solution is the basis of most polygonization
methods. Space is subdivided into discrete sub-cells, and individual cells are poly-
gonized only if an adjacent cell is already polygonized. A simple example in 2-
dimensions is described below in Figure 2.2. The polygonization phase, which is done
in each cell, is almost the same as the Marching Cube algorithm using a look-up table
[78][57]. It is more efficient than the exhaustive enumeration method, because exhaus-
tive enumeration only checks nearby intersected cells. In efficiency, this algorithm
has an advantage but is lacking in robustness in detection of seed-cells. For a simple
primitives, like torus, box, or sphere, it is not a heavy task, because simple primi-
tive’s surface is continuously. However for mathematical models as used in this paper,
seed-cell detection becomes a difficult problem because there are no information about
discrtete surface numbers in one cell.

9

For example, below Figure 2.3 shows five surfaces in one cell. In this case, the con-
tinuation method requires five seed points for making polygons. This task is complex
because below surface is defined by

���������������$�
� B F<� B F<� B F`�O����?`	�acb6� B � B � B ?`	dae4@b
,

and this formulation never yields required seed points number and discrete seed points.
So, linear continuation method is not versatile.

Figure 2.2: Piecewise linear method in contour
drawing [78]

Figure 2.3: Discrete surface.

Dark gray represents seed-cell, light gray investigated cell, arrows describe propa-
gation order, and white cells are never considered.

2.1.3 Subdivision Method
This algorithm is the recursive division of space into sub-cells that enclose the im-
plicit surface [9] [17]. Our algorithm is classified into this group. Such calculation
also yields a hierarchical data structure as an oct-tree of volume [31][40][55]. In three
dimensions, subdivision of a cube yields same size eight cells which exist in the orig-
inal subdivided cell’s vertices, and subdivision proceeds until the terminal node cell’s
condition satisfies criteria, cell size, curvature and so on. In the last decade, many re-
searchers tried to improve this algorithm.
This solution became popular after John M. Synder’s and Tom Duff’s theses [18][17].
In Duff thesis, a robust way is suggested with Interval Arithmetic (IA), which is a
numerical solution technique proposed by R. E. Moore in 1966 [2][4]. At first this
solution was used for error analysis [3] and maximum peak detection [5]. John M.
Synder imported this idea for resolving some computer graphics problems, especially
implicit surface polygonization in 1992 SIGGRAPH. His idea is quite simple, interval
arithmetic is used for detecting non-intersected cell, called space pruning which was
first derived by Devendra Kalra [15] with ray-tracing in implicit surface. After this pa-
per, some researchers used this approach, ray-tracing [20] [35] [47] [76], comparison
between Karla’s model [15] and Tom Duff’s model [17] [37], Boolean operation with
interval arithmetic [36], parallel method [40]. IA has a problem of being over conserva-
tive, and Joao Luiz Dihl Comba proposed a substitute solution for interval arithmetic,
called Affine Arithmetic [19]. This technique has also been extensively researched in
polygonization [24] [26] [70], surface intersection [30], shaders [39], ray-casting [41],
spherical coordinate polygonization [50], approximate parametric curve[72]. Some
researchers purely describe Interval Arithmetic and Affine Arithmetic (AA). Adrian
Bowyer’s team [48] [64] described comparison between IA and AA in the following
manner: they said AA is not perfectly superior to IA, but in most cases AA yields

10

tighter consequences, suggesting a more effective calculation with AA [59]. Huaho
Show also compared AA to Bernstein Hull Methods for drawing contour in two di-
mensions, and they also conclude AA is superior in most cases [65].
Katja Buhler suggests dynamic compresssion of cells produced by Affine Arithmetic
for ray-tracing method with implicit surface [53][66]. Besides interval analysis te-
chinique, tree-based structure is also described in some papers; Luiz Velho suggest
useful utilization of hierarchical data structure [44].

A simple example in a two-dimensional subdivision model, drawing contour, is
presented below Fig. 2.3. This subdivision yields a quad-tree method.

Original cell

First division

Second divison

Third division

2D Object

Terminal cell

Figure 2.4: Subdivision method for contour drawing

As described in Approach in Chapter 1.2, our suggested methods are also classified
into this method, and our methods is oriented in the extension and improvemnt [53][66]
into polygonization.

2.2 Ad hoc polygonization
In this section, we describe some polygonization methods which amalgamates sam-
pling and construction phases.

2.2.1 Shrinkwrap Polygonization
This approach builds a surrounding polygonized mesh and incrementally shrinks this
mesh onto implicit surfaces [21][28]. This algorithm also suggests adaptive polygo-
nization: relatively flat regions are approximated with large triangles, and tiny poly-
gons exist on the small curvature area. One disadvantage of this algorithm is the diffi-
culty in describing inner polygons. Therefore, we eliminate further discussion of this
approach.

11

2.2.2 Predictor Corrector Continuation Method

Figure 2.5: Predictor Corrector method in
contour drawing.

Previously discussed piecewise linear
continuation method extends surface
polygons with extending cells. On the
other hand, Predictor Continuation meth-
ods extends polygons by generating new
vertices on the border of current polygo-
nization [12][54]. The new point, p, is
placed in the tangent plane of the active
edge. A simple contour sample is de-
scribed in Fig 2.4. In [54], the polygon
is close to an equilateral triangle whose
length has a correlation with the local
curvature. The result looks fine, but such
method also needs seed triangles in each
closed model.

2.2.3 Particle-based Polygonzation

Figure 2.6: Particle based model [23].

Unlike the above algorithms, a physically
based particle polygonization method
uses equilibrium configurations of simu-
lated physical motions [16][23][29][58].
A sample result is shown in Figure 2.5.

In particle-based algorithm, it is pos-
sible to realize some merits, such as
delauny-like triangulation property and
adaptive triangulation. Delauny-like tri-
angulation implies creation of nearly
equilateral triangles; adapting triangula-
tion implies adapting the particle den-
sity to locate surface curvature. How-
ever, a particle-based method has a crit-
ical draw-back, expensive computation.
Tasso Karkanis compared particle-based
system with his algorithm, continuation method [54], and also concludes it is an ex-
pensive computation task.

2.3 Other rasterization solutions

The previous section mainly describes basic framework and overall approach to im-
plicit function polygonization. In the following sections, we introduce more approaches
which are adaptive and robust.

12

2.3.1 Adaptive Solution
The basic idea is that large polygons exist in low curvature areas and many small
polygons exist in high curvature areas. One of the problems of adaptive polygonization
is the cleft between fine and low curvature area; one solution that has already been
proposed is the restriction of adjacent decomposition cell size [26][27][54][52].

2.3.2 Robust Solution
This solution has been a popular research topic during the last decade and is also the
main focus of this research. This approach is used in cell detection to determine, which
cell is intersected. Firstly, this idea is suggested by Karla and Alan H. Barr [15]. The
first concept is quite differ from our approach, and the difference is described in next
subsection. After that, Devendra Kalra suggested robust solution in implict function
polygonization [15] with Interval Analysis [2][4]. After that thesis, this research topic
is especially related with Subdivision Method. So, all papers described in Section
2.1.3 after 1992 SIGGRAPH is related with this solution. Especially, [48] [64][63] are
focused on calculation throughput in mathmatical formulation calculation.

First Approach for Space Pruning

The first approach for robust Space Pruning with Interval Arithmetic was introduced
by Devendra Karla, and Alan H. Barr [15]. That paper advocated the use of basic
concepts in ray tracing for implicit surfaces. Besides techniques used in ray tracing,
some excellent basic concepts in quad-tree , or oct-tree, data structure, and one analysis
technique for cell detection (whether the cells are intersected by an implicit surface
or not) are also introduced. The Space Pruning cell detection algorithm, may be a
good solution in polygonization. In Karla’s paper, this idea is used for achieving good
performance in ray tracing. This paper uses a special type of implicit function called
LG-surface description which has bounds on the net rate of change of the function and
its directional derivative. Under this definition, L is used for the Lipschitz constant and
is equal to or greater then the maximum rate of change f(x) in R. This L is used for
detecting cells. Let fhg be the center of the cell and i be half the length of the principal
diagonal in the cell. Since the maximum rate of change with respect to distance of f(x)
is j and maximum distance from fhg is i , the maximum change in a cell is defined asjlk�i . Hence if m ����� g � m W jlkni (2.1)

then this cell is guaranteed to stay the same sign, and never assume a vlue of zero in
this cell and hence this cell should be thrown away. For example, in Figure 2.7, (b)
would be thrown away and (a) would seem to be straddling which is never decided for
straddling surface by level set value of vertex based solution.

This technique resembles the technique proposed in this thesis in terms of value
analysis, but there is a drawback in this method. In this method, L is required in the
normal definition. This technique does not work well, because it is hard to get an exact
L value since this method is a perfect black box. Therefore, this algorithm is not used

13

in our algorithm.

xo

xo

xo d

d

d

+

-

(a)

(b)

(c)

Figure 2.7: Sample category in [15].

14

Chapter 3

Polygonization Framework

In this chapter, we introduce the basic polygonization framework, ADF. We have al-
ready stated our polygonization category, hierarchical decomposition method, in Chap-
ter 1 and Chapter 2, and we use Affine Arithmetic (AA) [19] and Implicit Linear In-
terval Estimations (ILIEs) [66] in our polygonization framework. For explaining the
basic strategy with this two principles, AA and ILIEs, we introduce a more detailed
procedure of our proposed polygonization, and we describe each algorithm’s role in
our polygonization framework.

3.1 Basic procedure in implicit surface visualization

At first, the basic procedure in our implicit surface visualization algorithm is outlined
and classified in a list of four steps: preprocessing, dividing cell, vertex calculation,
and building polygon. We describe each step’s role in the visualization of an implicit
surface.

1. Preprocessing step: making a function from an implicit object definition.
Here, any implicit function is translated into a programming function. In our
model, two types of functions are required: normal value argument function and
the AA argment type function. In both function, the calculation notation is not
different.

2. Dividing Cell step: making a terminal cell or an interval which straddles the im-
plicit surface.
This step is characteristic in the hierarchical decomposition method. Any im-
plicit function defining the implict surface does not yield any information of
thevertex position which lies on the surface. Therefore, the user needs to de-
fine the object space, called the bounding box, and the program checks in the
bounding box. In the hierarchical decomposition method, the bounding box is
recursively subdivided into sub-cells until some criteria is satisfied, and the re-
sulting cell is yielded which may be straddling ithe mplicit surface; it is called
the terminal cell. Our main concepts, robust and adaptive, are related here, and
more detailed steps are mentioned in the following sections.

15

3. Vertex Calculation step: making vertex in each cell.
Terminal cells, decided by the dividing cell step, may include a implicit surface.
So, each cell’s vertices are calculated and positions of the polygon vertices are
estimated from the function’s value. In our polygonization model, some im-
provement is also attempted in this step.

4. Building polygon (line) step.
Polygons are created by connecting the vertices calculated in the previous step.

Our polygonization method implements the previous four steps, and in each step
some improvement is carried out for achieving a Robust and Adaptive solution. These
improvements are described in next sections.

3.2 Details of polygonization steps
In the sub-sections below, the four calculation steps, preprocessing, Dividing cell, Ver-
tex calculation and Make polygon, are further elaborated focusing on our improve-
ments and extension. In each of the steps, we describe in more detail their relationship
with the robust and adaptive concept.

3.2.1 Preprocessing step
As mentioned above, any implicit object definition is needed to convert a program
method in this step, and two types of functions are required for our method: normal
argument types and Affine Arithmetic arguments types. AA arguments function is
key to our polygonization framework. In our program, Affine Arithmetic is treated
as a single parameter. Therefore, we only need to replace a normal value function
parameter into an Affine Arithmetic parameter. In our test case, there is no difference
between a double parameter function and an Affine Arithmetic parameter function.
The example below is directly extracted from our sample C++ code, which defines a
normal unit circle, and AAF, library value described in Chapter 6, indicates an Affine
Arithmetic value. There is no difference excepting that the function parameter values
are either AAF or double.

AAF function(AAF x, AAF y) o
return 1.0*1.0 - x * x - y * y;p

double function(double x, double y) o
return 1.0*1.0 - x * x - y * y;p

In our test case, any mathematical object is directly written into source code, and it is
possible to extend this formulation into any implicit object parser, such as the Hyper-
Fun parser [46], because the basic calculation program code is not different from the
normal one.

16

3.2.2 Dividing Cell step
In implicit surface or line visualization, cell dividing is a key point to visualization.
Hierarchical decomposition method, or octree or quadtree based decomposition method,
is used in our framework, and we use oct-tree data structure for maintaining hierar-
chical decomposition results. The fundamental step of hierarchical decomposition in
dividing cell step, as described in Chapter 2, is recursive decomposition of the initial
cell, called bounding box, into sub-cells. The recursive computation is not finished
until fulfilling some criteria, width or curvature. The advantage of this type of com-
putation is efficiency for calculation. It is possible to assemble the cells in the surface
area for testing.
As described in Chapter 2, the key point of this type of polygonization is robustness.
In the conventional solution, cell dividing is dependent on the level set value of vertex,
and in that case the result can be ambiguous. For example, there is no unique solution
to detect the case shown in Figure 1.2 as including a surface. This problem is avoided
by the idea of Interval Analysis, as described by Tom Duff [17]. Detail computation
and definition of Interval Analysis are described in the next chapter, so we only men-
tion it here. Interval Analysis yields a range value for each cell. So, by employing this
technique, a robust determination as to whether a cell is traversed or not is achieved.
In our method, Affine Arithmetic is used for Interval Analysis, and the AA calculation
yields the range of cell function.

The previous steps have been suggested in many other papers [19][24][26][30][39]
[41][64]. We add some more improvements. First, we employ a cell pruning algorithm,
which means getting rid of extra space before subdivision. Conventional decomposi-
tion polygonization uses regular interval decomposition; if the first cell is a regular grid
cell, the terminal cell would be a regular cell. On the other hand, our terminal cells can
be rectangles.

Second, we adopt curvature analysis which is related to the decomposition criteria.
Some researchers have already suggested the same criteria for detecting cell size or
polygon size [27][44][52]. Basically, all other techniques directly calculate curvature
in points or interval. In our method, we do not calculate such curvature values. Instead
of accurate curvature calculation, we estimate rough value in surface curvature.
Both added algorithms, cell pruning and curvature analysis, are achieved with Implicit
Linear Interval Estimations [53][66]. Accordingly, each cell is compressed into a line
range, as shown in Figure 3.1 below.

17

Figure 3.1: Divide bounding box.

In the above figure, the dark gray area expresses Implicit Linear Interval Estima-
tions, which are derived from Affine Arithmetic result. This interval result is guar-
anteed to involve an implicit surface. So some computation is done with this idea.
Pruning is done with ILIE’s result, because a surface must exist in the dark gray area.
Thus, there is no need to calculate in the extra area of the cell. For example, in Figure
case 3.2, the lower right area is pruned.

Pruned

Figure 3.2: Pruning cell.

Additionally, the gray area width becomes one criteria for brief curvature value. In
most previous polygonization techniques, accurate curvature value is used as a criteria
for deciding polygon resolution level; curvature value is used for deciding more subdi-
visions or not in the cell pruning step, so accuracy of curvature is not so important for
cell curvature analysis.
In such usage, width of ILIEs is enough for recursive decomposition. If the width of
ILIEs is less than a tenth of the required cell size, its variation is not so different in the
terminal cell or ILIE result yielded in the midstream step. Therefore, it is possible to
be an alternative criteria for accurate curvature.
The above two concepts are extensions for conventional decomposition polygoniza-
tion and make our polygonization an adaptive solution. Finally, pseudo programming
code in dividing cell steps is shown below. Most of below code is the same as [66],
excepting * line. So, all of the ILIEs described in later chapters do not implement
pruning marked with * line, whereas EILIEs, described in 5.2.2, implement this point,
because ILIEs denote simply conversion of [66] into polygonization, whereas EILIEs
implement our extended implementation.

18

Algorithm decomposition(Interval interval) q
// Affine arithmetic is done with interval
if(check intersection(interval) != TRUE) q

return;r
if(diameter(interval) s smallest width) q

interval.terminal = TRUE; //set interval terminal
return;r

ILIEs = calculate ILIEs();

if(diameter ILIEs(ILIEs) s smallest width) q
interval.terminal = TRUE; //set interval terminal
return;r

// Pruning Interval with ILIEs
pruned interval = pruning(interval);

// Re-calculate ILIE
ILIEs = calculate ILIEs();

// In 2 degree, subdivide 4 cells, In 3 degree, subdivide 8 cells.
sub-interval = subdivide(pruned interval into) ;

for i = 1.... 8 q
// Check each cell intersects ILIEs, or not
if(ILIEs intersect sub-interval[i]) q

// after pruning recursive decomposition
* decomposition(pruning(interval))

rrr
Bold letters indicate improved points which are not implemented in the conventional
polygonziation program, and last pruning is not implemented in ILIEs [66].

3.2.3 Vertex Calculation step
After the dividing cell step, terminal cells are obtained, and vertices are estimated in
each terminal cell. In the conventional solution [26], functions are calculated in eight
cell vertices, and vertex positions are estimated from the vertices calculation values
with linear interpolation. In our solution, linear interpolation is also used to estimate

19

vertex position, but differs from the conventional way in the vertex position. In our so-
lution, line or plate segments are yielded from ILIEs in the dividing cell step, so cross
points between ILIEs and cell edges are used instead of eight cell corner. In Figure
3.3 below, each cell has four cross points with ILIEs area, denoted by dark gray, and
functions are commutated in each vertices. That result is used for estimating vertex
position, so consequently, accuracy of the surface vertex is increased, because our cal-
culation position is narrower than conventional cell based interpolation. So, we get
more accurate surface position in the same cell size than conventional method.
However, there is a disadvantage in this solution, called the cracks problem, as shown
in the two dimensional example Figure 3.3 below:

Figure 3.3: Cracks between vertices result.
All vertices are estimated with linear interpolation of each level set value of vertex, so
if the width of the adjacent cell’s ILIEs is different, the resulting coordinate differs in
one edge as shown in Figure 3.3. In the above case, we suggest fitting to the narrow
range vertex, because the exact vertex point is calculated with the narrow range.
Besides above crack problem, in three dimension adaptive decomposition, another
crack occurs between different levels of cell resolution. This type of problem is com-
mon in adaptive decomposition. One example is described in Figure 3.4.

Figure 3.4: Cracks in three dimension [45].

Between different level of cell resolution, as Figure 3.4, cracks occur. Some re-
searcher’s solutions have already been suggested in [22][32][49]. However, these so-
lutions are designed for only regular cell adaptive decompositions, and not easily used
in our case because of pruning. In some cells computed by our method, cell size is
different, and it is hard to find adjacent cells.
So, some improvement is needed to find adjacent cells, but it is possible to extend
some reference ideas into our polygonization. For example, the simplest solution is
fitting to coarse solution. In above Figure 3.4, fine cell vertex position is changed for
fitting coarse line position. For adapting this simplest solution into our solution, one
more fitting is needed. Because edges end position between fine and coarse are also
different. So, edge vertices also need to fit narrow one, but it is possible to use the

20

simplest solution in our solution.

3.2.4 Building polygon (line) step
In this step, we explain how to make polygons from the estimated vertices. We sug-
gest two solutions using exhaustive enumeration polygonization method [8][13][57]
and dual contouring method[61][62][56]. It is possible to use both polygonization
methods, but our application supports only exhaustive enumeration solution because
of polygonization simplicity. Exhaustive polygonization steps are described below.
Polygonization based on cell vertices value analysis

This solution is the most cited solution for making polygons. The configuration of the
set of polygons for a cubic cell is determined by the number of cell corners in which
the function value is positive. Since each cell corner can take the binary state, in which
the function value is positive or negative, there are 256 possible configuration for eight
corners. The connectivities of cell edges for 256 possible configuration are stored in
a look-up table, and 256 possible configurations are classified in fifteen basic configu-
rations using rotation a diversion of the state in the eight corners. From this analysis,
a look-up table with each corner vertices’s value is implemented. With this look-up
table, we get assortment in edge numbers. In the thesis by Gotou [57], each of the
vertices, surfaces and edges in the cell are indexed as shown in Figure 3.5, and the
combination for polygon creation is directed by the combination of edge numbers.

Figure 3.5: Cell indexing convention [57].

For example, if 0th and 1th corner have positive and others have negative values,
3(00000011) is used for the look-up table index. From this index, the look-up table
yields combination of edges,

=Xt uvt w
and
w<t u`t x

. Thus, we use this look-up
table for making edge vertices combination. To use this table, we need to detect each
cell’s vertices value, negative or positive. Fortunately, we have already checked each
ILIE interval segment’s vertices value. So, we utilize ILIE’s vertices value for this
look-up table value. In some cases, there is no corresponding vertex in the ILIE seg-
ments. For example, if the ILIE is straddling in edge 0, 8, 3, there are no corresponding
vertices for 2, 5, 6 and 7. In that case, we set max or minimum value in vertex 4, 1 and
3 into no corresponding vertices value, because our implementation has already knows
there is no possibility for straddling implicit curves. So, we do not need to calculate
value in each vertex.

21

Chapter 4

Interval Analysis algorithm

In this section, we introduce one algorithm for detecting cells straddling the implicit
surface, called interval analysis. With this algorithm, our framework can achieve ro-
bust solutions.

4.1 Interval Arithmetic
Robust methods for detecting cell straddling can be obtained by using range analy-
sis, called Interval Arithmetic (IA). This solution can be found in R.E.Moore in 1966
[2]. IA automatically keeps track of rounding and truncation errors for each computed
value. IA is widely appreciated as a highly efficient algorithm to manipulate uncertain
data.
An early thesis with Interval Analysis in Computer Graphics, written by John M. Syn-
der [18], suggests two algorithms, called SOLVE and MINIMIZE, to solve some com-
puter graphics problems by using Interval Analysis, and one simple example of ap-
proximate implicit curves is shown. Subsequently, some researchers started to use IA
in visualization of implicit function. In the next subsection, we introduce details of the
IA technique.

4.1.1 Definition of Interval Arithmetic and Results
In Interval Arithmetic, quantities are represented by intervals and mathematical func-
tions are extended to operate on intervals. In a more precise definition, a quantity����

is represented in IA as :�y�z13{|��}�L
, where a and b are real numbers(including

;�~
)

with the understanding that
{h�l�n�N}

Arithmetic operations can be extended to intervals as [35]:13{|��}�LdF�1�&G� i L��:1�{�F�&G��}�F i L13{|��}�LO?
1�&6� i L��%13{�? i ��}_?0&�L13{|��}�L k 1�&6� i L��%1���-#/$�,{Q&G��{ i ��}H&6��} i �H���y{@���#{+&6��{ i ��}H&G��} i �>L13{|��}�LRDn13&G� i L��z1�{|��}�L k 1�=GD i �M=GD*&�L�� !|� 'G�+- i+�.i 	�D01�&G� i L��
22

1�} � ��{ � L
, if n even or

}��N	� � �:13{ � ��} � L
, if n odd or

{h�N	1�	����y{@���,{O��}C� � L
, if n even and

	`n�
With the above mathematical operation definition, Moore [2] showed that every com-
putation function f has a natural interval extension function F, which include f results.
Any algorithm for computing f can automatically be interpreted as an algorithm for
computing F simply by composing interval formulas for the primitive operations. So,
in the decomposition step, all implicit functions are extended into interval formulas,
and cell intervals are used in parameters of that function: f � 1�� ��'+��� ��-,L���� �1�� ��'Q��� ��-#L#�H�
�z1�� �,'+��� ��-#L

.
Those extensions are specially powerful to implement with C++, because they support
operator overloading, and in the example below we implement such an idea.
Figure 4.1 and Figure 4.2 are examples of IA’s decomposition method in a two dimen-
sional and a three dimensional visualization. Black boxes in two dimensions denote
straddling cells, and vacant cells never straddle the implicit surface.

Figure 4.1: Interval Arithmetic result. Figure 4.2: Interval Arithmetic result.

With this algorithm, Robust polygonization is achieved. However there is a problem to
use this solution in visualization, called the over-conservatism problem.

4.1.2 Over-conservatism Problem in IA

Over-conservatism is caused by the Independence of the parameters used in definition
in implicit function.

Simple sample of cover-conservatism is described in:�`�S� k ����?������01J=@��w�L#a
(4.1)

In the IA rule, the result range of the mathematical expression in [3.1] is calculated as

23

follows: ���%1�=*��w�L��?��y����?N1J=@��w�L��%1�=*��w�L���N� k ����?����R�%1�=@��w�L k 1J=@��w�L��%1�=*��u�L
Real result is [3,4]. So, IA yields eight times wider result.

This over-conservatism in the IA calculation becomes a bottleneck in complex im-
plicit functions, such as procedural implicit functions. Unfortunately, long computa-
tions are common for describing three dimensional objects. For solving this problem,
two techniques have already been suggested by Joao Luiz Dihl Comba [19] and Irina
Voiculescu [48], that is using Affine Arithmetic instead of Interval Arithmetic and
formulation deformation. Formula deformation is using Bernstein-form and Horner-
form instead of Power-form. As described in Interval Arithmetic explanation, Interval
Arithmetic result is effected by calculation formulation. So, they focused on those
calculation formulation. Some experiments of those formulation is done in [48], and
comparisons are done in Martin paper [63]. In their comparison data, Affine Arith-
metic is also described and recommended to use interval methods. So, basic concepts
of Affine Arithmetic are described below, and we choose AA for our framework.

4.2 Affine Arithmetic

Affine Arithmetic (AA) is proposed in 1993 by Joao Luiz Dihl Comba [19]. The main
difference between AA and IA is the error tracking style. IA range is represented by
a numeric value. So there is no relation between source values and result values. On
the other hand, AA is designed for considering correlations or dependencies between
the sources and results, and it becomes an advantage in those calculation. By this
advantage, AA produces a tighter range than interval arithmetic. We discuss the over-
conservatism consideration with AA in section 4.2.5.

4.2.1 Definition of Affine Arithmetic

In AA, any variable is represented by the affine form in a first-degree polynomial. For
example, the affine form of quantity x is represented as x̂ and described as:��y�
��	AF0���9 H��F2� B B FNa¡a¢a¢a¡a¢a¡a.F0� � � (4.2)

In this definition, x̂ is a known floating real coefficient, and
 � is a fluctuation value

and assumed to lie in the interval [-1,+1]. Each

is perfectly independent value and
� �

is a magnitude of each

contribution.
In the Comba paper, each word is labeled such that

� g is the central value of the
affine form X; the coefficient

��£
is the partial deviations, and

 �£
is the noise symbol.

24

4.2.2 Conversion Between IA and AA
When using affine form to quantity x, the range of quantity x is represented with

��
as

below: 1 ��OL��z1�� g ?0 M��� g F� 9L U��¤ ¥��|£�¥
(4.3)

This interval is computed with the assumption that each
 �£

is mutually independent
over [-1,+1]. The above definition is theoretical, so we introduce a more ordinary
example to translate the interval definition into the affine form. Let’s consider with
interval ¦� = [a, b]. We can convert this interval as in the formula below:��y�N� g F2�O§ k �§ (4.4)� g � }�F�{4 ���O§¨� }U?0{4 (4.5)

The noise symbol
 �§

means the uncertain value width in the value of x, and
 H§

=
[-1, +1].

4.2.3 Affine Form Computation
In this section, the basic concept of Affine Arithmetic, which was introduced by [19],
is described.
To evaluate an implicit formula with the affine form, we need to replace real value
operations

�S© �����������
into affine form operations

��V© ���� ���� ��d�
. f̂ is a procedure

for computing Affine Arithmetic in
�ª© �����������

. By definition, x and y is defined as
follow: ���
� g F2���9 (�«F
a¢a¡a¢aGF0� � � (4.6)�`�
� g F0�Q�E (�«F
a¢a¢a¡aGF0� � � (4.7)

for some unknown value
 C�(�Ka¢a¡a¬ � � � .

Using this changed converted value, z is defined with � !)K-®��'G/«£ as below:�X��������������X������� g F2���9 (�«F
a¢a¡aGF2� � � ��� g F0�Q�E H��FNa¡a¢aGFP� � � ��X���°¯G�, (�H�� B �Ka¡a¢a¢�� � �
From the above definition,

�«¯.�, (�(�� B �Ka¡a¢a¢�� � � is replaced into the affine form:�±��� g F����9 H��FNa¡a¢a¡a.F�� � �
This formula perfectly fills the constraints described in (4.6) ² (4.7), and there are no
more constraints in the above formulation. Besides this definition, we would like to
describe mathematical operations in the next subsection.

25

4.2.4 Mathematical Operations with Affine Arithmetic.
We show each mathematical operation with Affine Arithmetic, as defined by previous
papers [19] [48].

Affine Operation

The range of x and y is described by the definition as follows:����N� g F0���9 (�«F
a¢a¢a6F0� � ������� g FP�Q�> (��FNa¡a¢a6FP� � � (4.8)

and
"���

, then��±; ��`�%��� g ;V� g �«F������«;��Q�9�E (�«F
a¢a¡a6F���� � ;V� � �E �" ��ª�:�,"7� g �«F��,"7���9�E (�«F
a¢a¡aGF2� � �,"� � ���±;l"³�:�#"ª;��«´�	�Lµ�«F0���9 (�«F
a¢a¡a.FP� � � (4.9)

Note that, according to the above formulas, the difference x̂ - x̂ between an affine form
Dan itself is identically zero. In this case, the fact that the two operands share the
same noise symbols with the same coefficients reveals that they are actually the same
quantity, and not just two quantities that happen to have the same range of possible
values [26]. This feature leads to some good computation performance, such as

� ��<F��d�O? ���� ��
and
w ��Y?¶4 ���� ��

. These calculations are never done in Interval Arithmetic,
and this is one of the reasons for effective analysis.

Non-Affine Operation

Commonly,
�

is not an affine operation, and it is difficult to express as in (4.9) formula,� ¯ �, (�(�Ka¢ac �/��R� ��� ���� ����
. In that case, it is impossible to express ẑ into an accurate affine

form with the combination of
 �£

, so we would like to approximate
��¯

in the from:��·��# M=*�Ka¡a¬ �/������ g FP���E (�«F
a¢a¡a6FP� � � (4.10)

This formula is a reasonable approximation over domain
 �

. The above information
is not enough to express an exact value range, so

�6§M �§
is adopted to express variation

by a non-affine operation, and the resulting formula is expressed as below:��X��� · �# (�(�Ka¢a¢ac � ��F��K§M �§�
� g FP���9 (�«F
a¢a¡aGFP� � � F��K§K 9§ (4.11) �§
is a brand-new and independent noise symbol produced by f, and

�*§
is a maximum

value of
m � m

in the given interval as below:�y{@� o m � ¯ �, (�(�Ka¢a¡a¬ � ��?P� · �# (�(�Ma¡a¢ac � � md¸ (�(�Ka¢a¡a¬ � � p (4.12)

In the next step, the previous definitions are used to describe multiplication and square
root arithmetic.

26

Multiplication and Square Root

In this section, we would like to consider about multiplication in the affine form. So,
we would like to think about

���¹�����������º�»� k � . x and y are defined as (4.9), so ẑ
represents quadratic a polynomial

��¯.�# (�(�Ma¡a¬ � � as described below:

�±��� ¯ �, (�(�Ka¢a¡a¬ � �� ��h¼ ���%��� g F �¤ £�½�� �|£� 9£���¼Q�,� g F �¤ £�½�� ��£� E£,��
� g � g F �¤ £J½�� ��� g ��£+FP� g �|£,�9 9£�F�� �¤ £�½�� �|£� 9£���¼Q� �¤ £�½�� ��£¾ 9£,� (4.13)

The best approximation of the affine operation in the above form into
� ¯ �, 9£®�Ka¢a¬ � �

consists of the formula:� ¯ �, 9£��Ka¢a¬ � �R�N¿��# H�(�Ka¡a¬ � �R�N� g � g F �¤ £�½�� ��� g �6£dFP� g �|£,�9 9£ (4.14)

Besides that, the last term is expressed:À<�# E£��Ka¢ac � �R�z� �¤ £�½�� �|£µ 9£,��¼Q� �¤ £�½�� ��£� E£��� �¤ £�½�� �¤ Á ½�� �|£¾��£µ 9£� Á (4.15)

Q is the center-symmetric function and its domain
 �

is also center-symmetric.
From these properties, the affine approximation of

À<�# �£��Ka¢ac � � is represented with a
simple affine function, such as

ÀÂ��"vFÄÃ7 �§
. So, if function Q’s range is expressed by

[a, b] over
 �

,
Àh�, 9£��Ka¢ac � � is translated as follow:Àh�, 9£��Ka¢a¬ � �Rt {�FP}4 F {�?0}4 9§ (4.16) �§

is a new noise symbol described in the above section. This formula satisfies
Àh�, H£��Ka¢ac � �

range, but in most cases estimation of the precise max and min values in Q is a heavy
task. Therefore Dihl Comba introduced one way for a quick conservative range esti-
mation of Q. 1J?¨ÅO�O�HF�ÅO��LÅª� �¤ £�½�� m �|£ m ���±� �¤ £�½�� m �6£ m (4.17)

27

This definition reads
�,}�FÆ{Q��D@4P� �,ÅO�vFÇ�E?AÅO���9��D@40�È	

, and
�#}Y?�{d�9D@4V� �,ÅO�y?�E?AÅO���9��D@4��NÅ��

; therefore, the multiplication form (4.15) is represented as follows:��±� �� k ����� g F����9 (�«F
a¢a¡a¢a6F�� � � FP�K§K �§ (4.18)� g �
� g � g�M£°�
� g �6£dFP� g �|£�K§¨�
ÅO�
(4.19)

u and v is defined in (4.17). This interval is twice the exact range of Q, so some
improvement is suggested for multiplication process. Two improvements for more
precise multiplication are described in below.

One improvement for multiplication is suggested by Irina Voiculescu [48]. The
basic concept of [48] is the power calculation in each noise symbol. Each AA multi-
plication yields new noise symbol,

, as described in (4.19), and same transformation

is done between same noise symbols,
 M� k (�¨t B . On the other hand, below multi-

plication is suggested in [48].�� · �z��� g F2���9 9É6� · �
� ·g F ·¤ £J½�� Ê { -hË � ·HÌ £g � £ � £É (4.20)

Note that above polynomial (4.21), when i is odd
 £É

will vary in the range [-1,1], and
when i is even

 £É
will vary in the range [0,1]. In other words, the noise

 £É
varies over

the same range in alternate term. For implement this idea, AA must have two noise
symbol types,

(=[-1,1]) and Í (=[0,1]).

Another improvement is suggested by Huahao Shou[59][63] which includes the
power calculation, as described in [48], and the distribution law. For achieving this two
concepts, they suggest using the Modified Matrix AA polynomial evaluation method
(MAA). Basic MAA steps are described in Shou’s thesis [59] and computation exam-
ple is described in R.Martin [63]. MAA yields a tighter range, but computation is more
complicated.
So, precise computation is done with more complex manipulation as suggested in
above. The exact range of Q is computed in O(

�y��'GÎQ�
), m means the total num-

ber of non-zero coefficients of the noise symbol in x̂ and ŷ. It is difficult to decide
whether performance or accuracy, because its criterion is complex. In this paper, two
types of manipulation are tested, simplest one and the power calculation one.

The square root computation,
��<�ÇÏ ��

, of the affine form
��³�Æ� g FP���9 (��F�a¢a¢a*F0� � �

is described below [26]: ��X��� g FP���E (�«F
a¢a¡a6FP� � � F��K§K 9§� g �
"7� g FPÃ�M£°��"��|£�K§¨� Í (4.21)

28

and each new constant number is defined as below:"³� =Ï {YFlÏ }Ã�� Ï {�FSÏ }x F Ï {�Ï }4�� Ï {YFlÏ }(�
Í � ��Ï }U? Ï {�� Bx|� Ï {�FlÏ }C� (4.22)

a and b is interval of [x̂],
�n013{|��}�L

.

4.2.5 Extension for procedural function and mathematical func-
tion

In this section, we explain more mathematical functions, as sine, cosine, tangent and
exponential function. Besides that, some conditional statement extension with Affine
Arithmetic is also described.
At first, we explain each mathematical function with Affine Arithmetic. Unfortunately,
it is impossible to take relevance between mathematical function result and inputed
parameter. So, calculation is done after converting input Affine Arithmetic value into
Interval Arithmetic as described in John M. Synder’s paper [18]. We show an inclusion
function for cos(f) with Interval Arithmetic value, [a, b] which is converted by input
Affine value x.

&('�)Q�913{|��}�Lµ�R� ÐÑÑÒ ÑÑÓ
1J?�=@�M=ML -®� =_F�1 ·Ô L���ÕÔ1¢?�=@���y{@���,&C'�)+�#{Q�(��&('�)Q�,}(���>L -®� Ö ·Ô�× �ØÕÔ {�/ i Ö ·Ôd× �y' i 4��%=13��-#/$�,&C'�)+�#{Q�(��&('�)Q�,}(���(�M=ML -®� Ö ·Ô�× �ØÕÔ {�/ i Ö ·Ôd× �y' i 4���	13��-#/$�,&C'�)+�#{Q�(��&('�)Q�,}(���(���y{����,&C'�)+�#{Q�(��&C'�)+�#}(����L�� '.89� � �)K-,8>Å�{@8>-�'6/(4.23)

The result is converted into Affine Arithmetic again without no relation in input value’s
noise symbol. Similar functions can be constructed for operators such as sine, expo-
nential and logarithm function.

Our implementation also consideres procedural function extension. In procedural
description, some conditional statements function is used as if, while and switch state-
ment. In assumption statement, affine value is not treated like one variable. More detail
difference is described in the following simple example function by pseudo code.

Value assumption(Value in) q
if(in s 0) q

return in;r
else q

return in + 2;rr
29

In normal valuable calculation, this function is extremely simple. If input value is
under 0, input value is simply returned, and otherwise returned with added two in input
value. On the other hand, affine arithmetic, and also interval arithmetic, yields quite
different situation. We manipulate above function with interval

�y�:1J?�=*�K=ML��� K�
.

This interval x applicable both situation. So, in interval case, each statement is calcu-
lated, and the result yields [-1, 0] and [2,3]. However, in normal function absolutely
returns one value. Therefore, the above function with Interval Arithmetic yields [-1,3].
Affine Arithmetic is also calculated as Interval Arithmetic. The different point is that
Affine Arithmetic needs to translate Interval Arithmetic format into Affine Arithmetic
format.
So, some assumption computation with Interval Analysis is more complex than normal
valuable analysis. We need to extend assumption idea into interval as to partitioning
tool. In that case, current statement with Interval Analysis is not suitable because of
the lack of some information making result interval.

4.2.6 Example of Affine Computation
To test the above formulas, we calculate one simple example, defined in the over-
conservatism problem:

��ª�%� k �,��?P��� with
�2�1J=@��w�L

. The result of IA is [1,9], so
AA yields much tighter results in this situation.�����4ºF� (���? �����4�?0 (�

(4.24)

From this result, formulation is calculated with simple multiplication rule as follows:���� ����,��? �����z�#4ºF� (���C��4�?0 (�9����¨FP	 k (��?0 B (4.25)

Besides above result, we calculate with the power calculation Affine Arithmetic as
follow: ���� ����,��? �����
�¨F�	 k (��? Í � (4.26)

From the above translation result, we get the Affine Arithmetic result,
��³�Ù��;%=ª�13wd�Hb6L

, and the improved Affine Arithmetic result,
��y�:�±?�1�	��K=ML��Ø13w����*L

. The simple
Affine Arithmetic result is closer to the real result, [3,4], than the Interval Arithmetic
result, [1,9]. Moreover, Affine Arithmetic with the power calculation yields the exact
same result, [3,4].
This result shows the possibility to solve some over-conservatism problems, but fur-
ther analysis between Affine Arithmetic and Interval Arithmetic is still needed. For
example, in some simple power calculation,

�������R�N� B ���y�:1�	��H4GL
, Interval Arithmetic

yields more tighter and exact value, [0,4], than Affine Arithmetic value, [-2,4] or [-1,4].
Besides calculation precision, calculation complexity also needs to be discussed. Such
analysis is described in the next section.

30

4.2.7 Comparison of Affine Arithmetic and Interval Arithmetic
We post two example results of AA and IA visualization in two dimensions and three
dimensions, and the calculation times. All examples show the dividing cell step’s re-
sult, and vertex calculation step is also done in each results. Therefore, the following
computation times are directly related with the total computation time for the visual-
ization application in implicit representation.
2D object formulation example from theses [26][53]:�������������
� B F0� B F0� k ��?0	�aeb k � B k � B ?0	�ae4*b���������_21�?�4d�H46L¡B.a

Terminal cell size is
4 ÌQÚ

.

3D object formulation example:���������������$�
�OB�FP�QB�F��*B�F0� k � k ��?0	�acb k �OB k �QB k �*B�?0	�ac4@b�����������@�U01�?�4d�H4GL ^ a
Terminal cell size is

4 ÌQÛ
.

Computation time(second)
IA AA

2D example 0.014561 0.017154
3D example 0.187885 0.340699

Computations are done with Pentium 4 2.4Ghz, 512M DDR main memory, and Geforce
FX 5200 video card with 256MB DDR memory.

Figure 4.3: Interval Arithmetic result. Figure 4.4: Interval Arithmetic result.

Figure 4.5: Affine Arithmetic result. Figure 4.6: Affine Arithmetic result.

31

From the analysis in the 2D-example, some over-conservatism problem is avoided
by using Affine Arithmetic, but basically the evaluation of implicit functions with
Affine Arithmetic is a heavier task than with Interval Arithmetic. Especially in the
three dimensional example, the calculation time is almost doubled, and the above ex-
amples are a typical case of the over-conservatism problem. On average, AA calcu-
lation time is almost 3-4 times slower than IA. Another researcher, Luiz Henrique de
Figueiredo, said, “AA is typically 4-5 times slower than IA” [26]. This difference is not
a trivial difference in computation. In the Figueiredo case, half size cells are yielded
by IA in the same computation time.
The comparison of cell accuracy between IA and AA has already been checked by
Affonso de Cusatis Junior [41]. In that work, AA does not give a good solution in
all cases. In a few formulation cases, such as double torus and drop, IA gives better
results, but generally AA is superior to IA in the terminal cell’s performance.

From this conclusion, it would seem that we should choose IA, because some interval
analysis with Affine Arithmetric advantage is overturned by the performance draw-
back. However, we choose Affine Arithmetic for our interval analysis solution, because
AA has an important advantage for our purposes: ease of Adaptive calculation in poly-
gonization. With Adaptive calculation, computation time will decrease below that of
IA. Such computation is done with Implicit Linear Interval Estimations(ILIEs)[53][66].
The definition of ILIEs and Adaptive solution are discusssed in Chapter 5.

32

Chapter 5

Adaptive Calculation

Our polygonization framework adopts on adaptive analysis solution, and detailed steps
of adaptive calculation are explained in this chapter. In the previous Chapter 4, we
suggest using Affine Arithmetic for a Robust solution, and AA results are also used
in our adaptive calculation steps. We have two computations for achieving adaptive
polygonzation: cell pruning and criterion based on curvature in cell decomposition.

Before describing our algorithm in detail, conventional techniques for adaptive
polygonnization are described for comparison, and after that, our implemented algo-
rithm is explained.

5.1 Curvature Estimation in Conventional Way
Adaptive decomposition needs a criterion to decide the size of the polygon, and the
curvature value is used to compute adaptive polygonization. To estimate how the cur-
vature of the implicit surface varies in a cell, the plygonization program needs to com-
pute and estimate the gradient of the implicit function inside a cell. There are three
algorithms to estimate gradient: finite differences approach, symbolic differentiation
and automatic differentiation.

5.1.1 The Finite Differences Approach
Finite Different approach is derived from the following gradient formula:��Ü������R�%Ý¾Þ¡ßà�á É ��������?P���,����<?2� a

(5.1)

So, we get the curvature value to set boundlessly close value in parameters as a
tanget of curve. This solution is attractive in its conceptual simplicity, and no ad-
ditional computer programing is required. However, it is sometimes called the best
avoided solution because of inaccuracy. The accuracy of a finite difference approx-
imation depends upon the choice of delta, the input perturbation, and there is no a
priori method for selecting data: too large and the evaluation will suffer truncation er-
rors; too small and one is afflicted by round-off errors [10]. Therefore, researchers use
this solution for curvature calculation in the decomposition step. Besides this solution,

33

symbolic differentiation is also suggested to get gradient in implicit surfaces. It manip-
ulates an algebraic expression for

�
into an algebraic expression. This solution gets an

exact range value in an implicit function, but it has disadvantage: it takes a long time
to get the derivative expression. So, this solution is also avoided in some cases.
In visualization, especially in the criteria for the decomposition method, this solution
is not appropriate because of accuracy and extensibility. We need to estimate certain
range values in each cell, and it is difficult to estimate those values in this solution.

5.1.2 Automatic Differentiation
Instead of the above solutions, one ideal algorithm for deriving the function’s gradient
is suggested by [1][10], called Automatic Differentiation (AD). Derivative computa-
tion with AD is not an approximation value like the finite different approach: the only
errors in AD evaluation are round-off errors, and these will be significant only when
they already are significant for evaluating the function itself. So, this approach is used
in some case, minimization problem [14]
Given a suitable primal code, AD is the process of automatically generating code that
computes the gradient of the primal function. AD works by exploiting the fact that the
chain rule can be used to evaluate the derivatives of a function no matter how com-
plicated the primal function might at first appear. Once this is done, derivative are
automatically computed for complicated expressions simply by following the rules for
each mathematical elementally operation or function that appears in the evaluation of
the function itself.

Helio Lopes polygonization use this idea for curvature value in adaptive calculation
[52]. In Lopes paper, this technique is used with Intervals: all values in AD are con-
sidered as intervals; by this definition, the program can get interval estimates of partial
derivatives automatically. From this computation, Lopes program achieved adaptive
implicit curves with robust decomposition method, as shown in Figure 5.1.

Figure 5.1: Adaptive Robust result in implicit curves quoted by Lopes’s thesis.

34

As shown in Figure 5.1, Lopes’s implicit curve polygonization program [52] achieves
one of our suggested ideas in Adaptive solution: decomposition steps are stopped by
curvature criteria. From the perspective of the resulting visualization, this solution per-
fectly achieves our demand, but this solution also has a disadvantage, reduces through-
put. In the Lopes program, consequently, implicit function and automatic differentia-
tion, need to be separately evaluated; computation throughput is doubled.

5.2 Adaptive solution in our method
Our approach is based on Implicit Linear Interval Estimations derived from Affine
Arithmetic results, so extra computation is not required. This point is the advantage in
our method.

5.2.1 Implicit Linear Interval Estimations (ILIEs)
The interval line or plate segment inside the axes-aligned box is called Implicit Linear
Interval Estimation, and the ILIE segment is determined from the Affine Arithmetic
calculation result. As described in previous Chapter 4, Affine Arithmetic is converted
into an interval for detecting whether the result includes zero or not. In such calcula-
tions, some advantage of Affine Arithmetic is lost. To resolve this problem, Implicit
Linear Interval Estimations is suggested by Katja Buhler [53][66]. In these paper, those
segment is directly visualized by ray-tracing solution. In our approach, those segment
is used cell detection steps.

The basic theorem of ILIEs is as follows:[Implicit Object:â
:
���������
	

in ã � .���������������$��	
be an implicit surface of ã ^ .[Interval:ä �£J½��>å å £7æN� � a non-degenerated interval box.[Each variables:��|£°� ��|£>�, 9£,�$�
� g£ F0� �£ E£ , 9£7P1J?�=@�M=ML ,

the corresponding affine form to interval å å £®ç�-��%=@�Ma¡a¢a¡��/ .[Affine Arithmetic result:è Á 01J?�=*�K=ML#� éX�%=@�Ka¢a¡�������# (�(�Ka¢a¢a¡�� � � è �H�Ma¡a¢a¡� èQê � ¸ � ���� ������� g F �¤ £J½�� �.£� 9£dF ê¤ Á ½�� Î Á è Á (5.2)

35

[ILIEs derived from Affine Arithmetic result:
for
�� å å £

and
 9£°�� E£>���|£�� ¸ � �ÉKëì ���|£�?Ä� g£ � , -��»=@�Ka¢a¡a¢��/
j ����� ¸ � ����# (�M�������(�Ka¢a¡a¢a¢�� � ��� � �(�G1J?�=*�K=ML#�Ka¡a¢a¢�G1�?�=@�K=CL��Hç�Âí<F �¤ £�½�� �G£ =� �£ ���|£O?�� g£ � (5.3)í ¸ � � g ? �¤ £�½�� � g£� �£ �G£�F�1�? ê¤ Á ½�� m Î Á m � ê¤ Á ½�� m Î Á m L¡/ (5.4)

From the above calculation, Linear interval estimation of
â

on
å å

becomes:j ¸ � o �� å m 	` j ����� p (5.5)

For explaining above formula meaning, one two dimensional sample example is de-
scribed in here:

�y�:1�	��H46L
,
���z1J=@��w�L

,
�������������
�X?�� B a��y�%=_F
=K 9É��`� 4îF�=. à���� ���� ��d�R��4ºFN=. à ?
�>=�F
=. 9ÉG�EB� 4ºFN=. à ?l=º?P4* EÉ¨? è g (

 BÉ�ï è g)�%=_FN=. à ?04� 9ÉA? è g�%?�4* 9ÉIF
=K à F��E=º? è g �
From this result, ILIEs is derived as follow:j ���������R�Â?�4 É � F
= à � F��>=A? è g ��?S�E?�4@� �� ?S= B ��%?�46�`F0�YF��E? è g F
=.��%?�46�`F0�YFSí

,
ín�:1�	��H46L

In our implementation, iso-value becomes a surface. So, above ILIEs formulation is
rewrited as below: �`��46�<?
13	���46L

(5.6)

36

ILIEs and original function are described in Figure 5.2 below:

y = 2x

y=2x-2

J(=[0,2])

y=x2

0

1

2

3

4

-1

-2

x

y

1 2

Figure 5.2: ILIE in one cell.

Light gray area in Figure 5.2 is corresponded in-
terval area;

�����Ä��13	���46L��.1�=@��w�L
, and dark gray area is

corresponded to ILIEs segment in cell. As described
in left figure, ILIEs provide linear, tight, simple and
oriented enclosures for implicit objects inside a given
cell.

Some advantages of ILIEs are:[ILIEs is derived from Affine Arithmetic com-
putation result, described in the above theorem.
So, extra computation is not required to get
ILIEs after computing Affine Arithmetic in a
cell.[The diameter of ILIEs, notated as J, is a good
criteria to guess curvature in the area. From
this information adaptive computation is done
at an extremely low cost compared with the con-
ventional curvature calculation method, because
the conventional method required additional ex-
tra computation for estimating curvature in each
cell and the calculation cost is almost the same
as interval estimation [54].[The terminal cell has ILIEs, providing a tighter
piecewise linear interval which encloses an im-

plicit surface.[With ILIEs, unnecessary interval analysis of an implicit object is avoided without
any extra complex computation. Described in Figure 5.4, after the original cell
subdivision, each subdivided cell is tested as to whether the cell intersects, and
only cells passing this test are more computed.[ILIEs makes it possible for cell pruning before the decomposition step. After
calculation of ILIEs, a portion of the cell is pruned, and the rest of the cell is
subdivided. So, tighter cell subdivision is done.

37

5.2.2 Extended ILIEs
Besides that idea, our implementation extends a little in (5.4) formulation. As de-
scribed in Chapter 4, Affine Arithmetic has some strategy in multiplication, and our
framework can supports power formulation. Therefore, our affine arithmetic result is
extended as:���� ��°�$� � g F �¤ £�½�� � £ 9£dF ê¤ Á ½�� Î Á è Á F ð¤ §�½�� � § Í §�� E£®� è Á �%1�?�=@�K=ML#� Í §A�:13	d�K=ML#a (5.7)

From this extension, (5.4) formulation is described as follow:

Í ê £ � � ñ¤ §�½�� � § � � § �Zò i § � i §YTl	��	 � i §Y�N	��
Í ê · ÉY� ñ¤ §�½�� � § � � § � ò i § � i §YWl	��	 � i §Y�N	��í ¸ ��� g ? �¤ £�½�� � g£� �£ � £ F�1J? ê¤ Á ½�� m Î

Á m F i ê £ � � ê¤ Á ½�� m Î
Á m F i ê · ÉKL (5.8)

From this extensions, ILIE segment width becomes a little tighter than conven-
tional solution, but there calculation complex is increased. Before discussing about
the difference between original ILIE and extension ILIE, basic advantages of ILIE are
discussed as follow, and the analysis in this extension should be discussed with some
result in next section, because our extension is kinds of trade off in throughput and
accuracy.

5.2.3 Curvature analysis with ILIEs
As described in the above ILIE advantage, it is possible to estimate ILIE width for es-
timating cell curvature. To describe this idea, we show one simple two-dimensional ex-
ample:

ILIEs segments

Figure 5.3: ILIE with ellipse in 16 cells.

In Figure 5.3, the dark gray represents
ILIE area, and the black curved line rep-
resents an implicit line. This image
shows that it is possible to use the ILIE
width as a substitute for the real curva-
ture value of an implicit object. In Fig-
ure 5.3 example, each upper and bot-
tom two cells contains obviously wider
range compared with other ILIEs seg-
ments. So, those cells is needed to sub-
divide one more times. In our implemen-
tation, we derive the ILIE segment width
limit from the required cell size, tenth or
fifth of required cell size.

38

As a matter of fact, this width value is
superior to the real curvature range value.

If we polygonize a wavy line, like a sine curve, in two degrees with extremely small
amplitude and range, less than a tenth of the required cell size, ILIEs would stop the
decomposition polygonization. On the other hand, real curvature value polygonization
as described in automatic differentiation [52] should not stop decomposition steps until
satisfying required cell size, because the wavy line curvature value has a wider range
than normal value. This is a trade-off between accuracy and throughput, and ILIE can
detect the degree with intuitive width. This is one reason for using ILIE in adaptive
calculation.

5.2.4 Cell Pruning
As described in chapter 3, we use the cell pruning idea with ILIE. From the ILIE
result formulation 5.3, we can get two segment formulation. For example, we get the
following two segments in three dimensions:í��z1Jí ð3ó �Cí ñ £¡Lj �������������R��� É =��� �±FV� à =�+� ��F���ô =��� �¨FNí ð3ó (5.9)j �����������@����� É =��� ��FV� à =�Q� �YFV��ô =��� ��FSí ñ £ (5.10)

We calculate the crossover area with the above two segments and the cell, and pruning
is done as shown in Figure 3.2.

5.2.5 Intersection tests

Excluded cell by Intersectiontest test

ILIEs area

Next decomposition step

Figure 5.4: ILIE and intersection test .

Intersection tests are also a kind of Adap-
tive solution, and some extra computation is
avoided without some extra calculation.
In our polygonization, the cell is divided
into sub cells, and we use ILIE for detect-
ing whether those subdivided cells are strad-
dling the implicit surface or not before check-
ing each cell value with Affine Arithmetic.
ILIE is guaranteed to exist for implicit sur-
face in those intervals, so this test is also
Robust. The detail calculation is expalined
with left Figure 5.4. One big cell is sub-
divided into four cells, and original cell has
ILIEs area expressed with light gray in left
Figure, and each subdivied-cells are checked
for stradling ILIEs segmets, and if subdived
cell is not straddling, decomposition calcu-
lation is stoped in that cell. With this test,

39

total throughput in our polygonization is in-
creased, because normal computation of the straddling test with Affine Arithmetic is
more computationally intensive than this crossing test.

We suggest cell pruning method after cell intersection test. By this extension, cell is
more adaptive for the original lines.

That concludes our adaptive solutions, and we implement all suggested solutions in
our visualizations. The main advantage of our adaptive solution is throughput. All
adaptive solutions are achieved with extremely computation compared with conven-
tional solutions.

The difference, conceptual advantages and disadvantage, in our suggested method
are described in below with comparing Lopes’s solution [52].[Adaptive cell decomposition.

Lopes’s solution and our solution achieve to stop cell decomposition step with
curvature analysis. The difference of our method is accuracy of estimated points.
Lopes’s method never yields segments like ILIEs. So, points are estimated by
linear interval estimations with big cell edge’s vertices. On the other hand, out
method yields enough small segments compared with required cell size, and
absolutely, more accurate vertices positions are yielded.

[Throughput.
Lopes’s solution used Interval Arithmetic for each cell calculation, in Automatic
Differentiation and Interval Analysis. On the other hand, we use Affine Arith-
metic in Interval Analysis, and cell decomposition criteria is derived from In-
terval Analysis result. So, our solution is not calculate twice as Lopes’s so-
lution. However, it is difficult to conclude which one is superior to another
from throughput point, because Affine Arithmetic is more complex than Interval
Arithmetic calculation as described in Chapter 4, but Affine Arithmetic gen-
erally yields tighter range than Interval Arithmetic and those range effects for
total checked number. Therefore, it is not simplicity for generally conclude in
throughput point.[Gradient calculation.
Lopes’ solution makes Automatic Differentiation before cell decomposition step.
Automatic Differentiation is not versatility in procedurally defined implicit func-
tion, but it yields exact gradient in any points. It leads good polygon optimization
steps. So, this is one advantage in Lopes’s solution which is not supported by
our solution.

Further discussion is done in the next chapter with some two- and three-dimensional
application results.

40

Chapter 6

Results and Discussion

This section compares the results of using conventional cell based polygonization
methods: Marching Cube (MC), Interval Arithmetic (IA), and Affine Arithmetic (AA),
with our Adaptive Decomposition Framework(ADF). ADF, as first describe in Section
3.3.2, implements all of the basic constructs of conventional cell based polygonization
methods under an adaptive cell decomposition framework using the C++ language. We
use, modify and extend the AA library libaa [77] for adaptive calculation. For exam-
ple, we extend the AA multiplication as described in Section 5.2.2. However, the IA
computational algorithms, the decomposition framework, and the attending decompo-
sition data structures needed to support the framework are all made from scratch.

6.1 Result of Two-Dimensional Polygonization
At first, we show some dividing cell results with some required fineness for comparing,
Affine Arithmetic, Implicit Linear Interval Estimations, and Extended Implicit Linear
Interval Estimations. In cell graph, black area describing implicit line maybe strad-
dling in that area. Dark gray area in ILIEs and Extended ILIEs implies cell are which
includes ILIEs segments.
After comparison figure, three results in Marching Cube (MC), Interval Arithmetic de-
composition (IA), Affine Arithmetic decomposition (AA), ILIEs decomposition (ILIEs),
Extended ILIEs (EILIEs) decomposition is descriptives with below listed data.[Detailed tables of computation times with second.

Calculation time in two dimension is measured in total of dividing cell, vertex
calculation and make polygon steps. That time is statistics with Pentium 2.4Ghz,
512M DDR main memory, and Geforce FX 5200 video card with 256MB DDR
memory.[Tables of number of terminal cells and total cells.
Terminal cell means last cell which may be straddling the implicit curves ana-
lyzed by Interval Arithmetic or Affine Arithmetic. In ILIE situation, some cur-
vature based results are also included into this area.[Two line graphs of time and the percentages of terminal cell number in total
cells.

41

The aim for making Percentage of straddling cells in total cells is indicating
percentage of vain calculation which is not directly related for estimating line
detection.[Five dividing cell results with setting 0.0625 (

4 ÌQÛ
) cell size (Marching cube,

Interval Arithmetic, Affine Arithmetic, Implicit Linear Interval Estimations, and
Extended Implicit Linear Interval Estimations).[Polgonization results with EILIEs, ILIEs, and Marching Cubes by above cell
decomposition results.

In the three detailed examples, from page 43 to 47, we show five results in MC, IA,
AA, ILIEs, EILIEs cell division results with tablas of number of terminal cells and
total cells, and Line graph of calculation time.
All of the two dimensional examples are calculated with the interval [-2,2] and criteria
for ILIEs and ELIEs adaptive calculation is tenth of required width.
teste

42

Affine Arithmetic ILIEs Extended ILIEs

0.5

0.25

0.125

T
e
r
m

in
a
l

c
e
ll

 s
iz

e

Result

Figure 6.1: Fineness comparison of Affine Arithmetic, ILIEs and Extended ILIEs cell
dividing steps.

43

Two dimensional example from implicit line thesis [52][53]:� B F0� B F2�O�X?0	�acb6� B � B ?0	�ae4*b
.

The bottom chart shows discrete values with computation times, and the following
pages show image results with each method.
Time table (Second)

Width Marching Cube IA AA ILIEs EILIEsõ Ì B
(0.25) 0.000241 0.000982 0.002673 0.003764 0.005548õ Ì ^
(0.125) 0.000725 0.002452 0.005327 0.007734 0.011188õ�Ì+ö
(0.0625) 0.002651 0.006311 0.009069 0.013570 0.013794õ�ÌQÛ
(0.03125) 0.010583 0.014561 0.017154 0.015699 0.018789õ ÌQÚ
(0.015625) 0.044242 0.027960 0.033129 0.022708 0.024520õ Ìd÷
(0.0078125) 0.183965 0.062654 0.067965 0.033282 0.035052õ�ÌQø
(0.00390625) 0.768375 0.131197 0.131458 0.045557 0.041247õ�ÌQù
(0.001953125) 58.256225 0.271288 0.257936 0.059808 0.065536õ Ì � g (0.0009765625 * 0.450151 0.44654 0.072971 0.075981

Cell Number (straddling cell / total cell)
Width Marching Cube IA AA ILIEs EILIEsõ�Ì B

38 / 256 (
õ.ø

) 38 / 172 38 / 160 52 / 130 48 / 106õ Ì ^
66 / 1024 (

õ � g) 66 / 454 66 / 316 94 / 256 90 / 232õ Ì+ö
134 / 4096 (

õ � B
) 134 / 1192 134 / 538 192 / 424 122/280õ�ÌQÛ

266 / 16384 (
õ � ö

) 266 / 2614 266 / 970 254 / 526 182/382õ�ÌQÚ
522 / 65536 (

õ � Ú
) 522 / 5368 522 / 1816 382 / 736 254/496õ Ìd÷

1038 / 262144 (
õ � ø

) 1038 / 10834 1038 / 3442 518 / 994 390/703õ ÌQø
2074 / 1048576 (

õ B g) 2074 / 21394 2074 / 6616 766 / 1390 456 / 802õ�ÌQù
4146 / 4194304 (

õ B�B
) 4146 / 42748 4146 / 12886 1050 / 1858 742 / 1258õ�Ì � g 8282 / 16777216 (
õ B ö

) 8282 / 85138 8282 / 25372 1398 / 2476 896/ 1492

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Marching Cube

Interval Arithmetic

Affine Arithmetic

Implicit Linear Interval Estimations

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (
S
e
c
o
n
d
)

Width of terminal cell

-2 -3
2 2 2 2 2 2 2 2 2-4 -6-5 -10-7 -8 -9

Extended ILIEs

Figure 6.2: Calculation time with each
polygonization result.

Marching Cube

Interval Arithmetic

Affine Arithmetic

ILIEs

P
e
r
c
e
n

t
o

f
te

r
m

in
a
l
n

u
m

b
e
r

in

 t
o

ta
l
c
e
ll
s
.

EILIEs

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

0 %

Width of terminal cell

-2 -32 2 2 2 2 2 2 2 2
-4 -6-5 -10-7 -8 -9

Figure 6.3: Percentage of straddling cells
in total cell.

44

Figure 6.4: Marching Cube. Figure 6.5: Affine Arithmetic. Figure 6.6: Interval Arithmetic.

Figure 6.7: ILIE. Figure 6.8: EILIE.

Figure 6.9: Marching Cuble rline. Figure 6.10: ILIE line. Figure 6.11: EILIE line.

45

Two dimensional example [52]:
��BR?�� ^ F2�

.
The bottom chart shows discrete values with computation times, and the following
pages shows image results with each method.
Time table (Second)

Width Marching Cube IA AA ILIEs EILIEsõ Ì B
(0.25) 0.000230 0.000682 0.001489 0.002712 0.003025õ Ì ^
(0.125) 0.000740 0.001370 0.002992 0.003755 0.004247õ Ì+ö
(0.0625) 0.002740 0.002896 0.005834 0.005802 0.005490õ�ÌQÛ
(0.03125) 0.010407 0.005880 0.011080 0.007546 0.007037õ�ÌQÚ
(0.015625) 0.040972 0.012305 0.021878 0.009428 0.009308õ Ìd÷
(0.0078125) 0.164625 0.024708 0.042305 0.015433 0.012555õ ÌQø
(0.00390625) 0.640320 0.049740 0.086855 0.019330 0.018360õ�ÌQù
(0.001953125) 28.563134 0.104857 0.170219 0.026459 0.022733õ�Ì � g (0.0009765625) * 0.204026 0.338537 0.036050 0.031276õ Ì ���
(0.00048828125) * 0.417024 0.671857 0.055172 0.044383

Cell Number (straddling cell / total cell)
Width Marching Cube IA AA ILIEs ELIEsõ�Ì B

44 / 256 (
õ.ø

) 44 / 136 44 / 136 58 / 130 40 / 82õ Ì ^
82 / 1024 (

õ � g) 82 / 304 82 / 280 90 / 178 62 / 118õ Ì+ö
162 / 4096 (

õ � B
) 162 / 658 162 / 556 140 / 280 78 / 148õ�ÌQÛ

324 / 16384 (
õ � ö

) 324 / 1360 324 / 1060 182 / 358 110 / 196õ�ÌQÚ
646 / 65536 (

õ � Ú
) 646 / 2806 646 / 2062 234 / 442 148 / 250õ Ìd÷

1292 / 262144 (
õ � ø

) 1292 / 5674 1292 / 4030 408 / 706 209 / 340õ ÌQø
2580 / 1048576 (

õ B g) 2580 / 11404 2580 / 7936 530 / 892 283 / 454õ�ÌQù
5160 / 4194304 (

õ B�B
) 5160 / 23014 5160 / 15694 732 / 1210 391 / 622õ�Ì � g 10320 / 16777216 (
õ B ö

) 10320 / 46132 10320 / 31198 1006 / 1642 541 / 844

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (
S
e
c
o
n
d
)

Width of terminal cell

-2 -3
2 2 2 2 2 2 2 2 2 2

-4 -6-5 -10-7 -8 -9 -11

Marching Cube

Interval Arithmetic

Affine Arithmetic

Implicit Linear Interval Estimations

Extended ILIEs

Figure 6.12: Calculation time with each
polygonization result.

Marching Cube

Interval Arithmetic

Affine Arithmetic

ILIEs

EILIEs

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

0 %P
e
r
c
e
n
t
o
f
te
r
m
in
a
l
n
u
m
b
e
r

in

 t
o
ta
l
c
e
ll
s
.

Width of terminal cell

-2 -32 2 2 2 2 2 2 2 2
-4 -6-5 -10-7 -8 -9

Figure 6.13: Percentage of straddling cells
in total cell.

46

Figure 6.14: Marching Cube. Figure 6.15: Affine Arithmetic. Figure 6.16: Interval Arithmetic.

Figure 6.17: ILIE. Figure 6.18: EILIE.

Figure 6.19: Marching Cuble
rline.

Figure 6.20: ILIE line. Figure 6.21: EILIE line.

47

Two dimensional example [53]:
4�	�=.ú@	�� Û ?hw*	�=Gû*ú�� ö F�=K��=.b*ú�� ^ ?h4*w*�@����4�F�=Gbd=M�_F4*w�û�?2��x*	*�

.
The bottom chart shows discrete values with computation times, and the following
pages shows image results with each method. In this function, we show

4 ÌQÚ
.

Time table (Second)
Width Marching Cube IA AA ILIEs EILIEsõ Ì B

(0.25) 0.000213 0.001204 0.006588 0.007951 0.011093õ Ì ^
(0.125) 0.000726 0.003922 0.016358 0.019389 0.023439õ�Ì+ö
(0.0625) 0.002771 0.012406 0.031775 0.034808 0.039166õ�ÌQÛ
(0.03125) 0.011062 0.035600 0.049527 0.054840 0.059306õ ÌQÚ
(0.015625) 0.046004 0.100149 0.075722 0.073517 0.079831õ Ìd÷
(0.0078125) 0.175570 0.236630 0.119056 0.109680 0.105607õ�ÌQø
(0.00390625) 0.697627 0.487856 0.191662 0.130660 0.136262õ�ÌQù
(0.001953125) 18.505796 1.011880 0.333998 0.175303 0.181378õ Ì � g (0.0009765625) 2.021320 0.590873 0.231182 0.225799

Cell Number (straddling cell / total cell)
Width Marching Cube IA AA ILIEs EILIEsõ�Ì B

24 / 256 (
õ.ø

) 24 / 160 24 / 232 109 / 160 76 / 139õ Ì ^
46 / 1024 (

õ � g) 46 / 547 46 / 583 177 / 406 102 / 289õ Ì+ö
90 / 4096 (

õ � B
) 90 / 1747 90 / 1135 193 / 757 120 / 487õ�ÌQÛ

180 / 16384 (
õ � ö

) 180 / 5077 180 / 1759 264 / 1141 168 / 718õ�ÌQÚ
361 / 65536 (

õ � Ú
) 361 / 13954 361 / 2644 375 / 1594 252 / 982õ Ìd÷

717 / 262144 (
õ � ø

) 717 / 33595 717 / 4054 602 / 2194 367 / 1285õ ÌQø
1429 / 1048576 (

õ B g) 1429 / 71716 1429 / 6538 879 / 2884 552 / 1693õ�ÌQù
2852 / 4194304 (

õ B�B
) 2852 / 147400 2852 / 11161 1312 / 3802 864 / 2242õ�Ì � g 5699 / 16777216 (
õ B ö

) 5699 / 298507 5699 / 20041 2033 / 5122 1179 / 2797

Width of terminal cell

C
o

m
p
u

ta
ti

o
n

 t
im

e
 (
S
e
c
o
n
d
)

-2 -3
2 2 2 2 2 2 2 2 22

-4 -6-5 -10-7 -8 -9-10.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Marching Cube

Interval Arithmetic

Affine Arithmetic

Implicit Linear Interval Estimations

Extended ILIEs

Figure 6.22: Calculation time with each
polygonization result.

Marching Cube

Interval Arithmetic

Affine Arithmetic

ILIEs

EILIEs

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

0 %

Width of terminal cell

-2 -32 2 2 2 2 2 2 2 2
-4 -6-5 -10-7 -8 -9

P
e
r
c
e
n
t
o
f
te
r
m
in
a
l
n
u
m
b
e
r

in

 t
o
ta
l
c
e
ll
s
.

Figure 6.23: Percentage of straddling cells
in total cell.

48

Figure 6.24: Marching Cube. Figure 6.25: Affine Arithmetic. Figure 6.26: Interval Arithmetic.

Figure 6.27: ILIE. Figure 6.28: EILIE.

Figure 6.29: Marching Cuble
rline.

Figure 6.30: ILIE line. Figure 6.31: EILIE line.

49

This is a simple two dimensional exmples, which is related to our suggested prob-
lem in our Introduction. The figures below are described by calculating

���ü�
. We

show the Interval Arithmetic cell division result and ILIE polygonization result, and
four methods for the computation time with a line graph. The ILIE result is made with
a continuous line, not constructed by line segments.

Figure 6.32: Interval Arithmetic. Figure 6.33: ILIE result.

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
S
e
c
o
n
d
)

Width of terminal cell

-1 -2 -3
2 2 2 2 2 2 2 2 2 2

-4 -6-5 -10-7 -8 -9
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
Marching Cube

Interval Arithmetic

Affine Arithmetic

Implicit Linear Interval Estimations

Extended ILIEs

Figure 6.34: Calculation time with each
polygonization result.

Width of terminal cell

-2 -32 2 2 2 2 2 2 2 2
-4 -6-5 -10-7 -8 -9

P
e

r
c

e
n

t
o

f
te

r
m

in
a

l
n

u
m

b
e

r

in
 t

o
ta

l
c

e
ll

s
.

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

0 %

90 %

100%

Marching Cube

Interval Arithmetic

Affine Arithmetic

ILIEs

EILIEs

Figure 6.35: Percentage of straddling cells
in total cell.

The calculation times of ILIE with this formula are stable, because the decomposi-
tion step is stopped by curvature analysis in the first step.

50

Bicorn formula [52]:
�dB.�,	�aeû*b�BR?��OB(��?N���OB�FV4da¬	 k 	�acû@b���?0	�aeû*b�BH�EB .

Figure 6.36: IA. Figure 6.37: ILIE. Figure 6.38: ELIEs.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Width of terminal cell

-2 -3
2 2 2 2 2 2 2 2 2

-4 -6-5 -10-7 -8 -9
2
-11

Marching Cube

Interval Arithmetic

Affine Arithmetic

Implicit Linear Interval Estimations

Extended ILIEs

C
o

m
p
u

ta
ti

o
n

 t
im

e
 (
S
e
c
o
n
d
)

Figure 6.39: Calculation time with each polygonization result.

Cell Number (straddling cell / total cell)
Width Marching Cube IA AA ILIEs EILIEsý.þ�ÿ

82 / 4096 (
ý����

) 80 / 376 82 / 541 136 / 382 119 / 325ý.þ��
160 / 16384 (

ý���ÿ
) 158 / 718 160 / 925 240 / 628 198 / 505ý.þ��

318 / 65536 (
ý����

) 316 / 1414 318 / 1573 430 / 1018 319 / 760ý.þ��
636 / 262144 (

ý���	
) 634 / 2800 636 / 2794 664 / 1498 494 / 1126ý.þ�	

1272 / 1048576 (
ý
���

) 1270 / 5590 1272 / 4951 1094 / 2322 756 / 1630ý.þ��
2548 / 4194304 (

ý
��
) 2546 / 11188 2548 / 9157 1590 / 3526 1126 / 2314ý.þ����

5104 / 16777216 (
ý
�,ÿ

) 5102 / 22348 5104 / 17305 2372 / 4684 1670 / 3307

51

”Clown smile” formula [52]:
�dBG�#	daeû@b6B$?��OB(��?
���OB�FV4da¬	 k 	�acû@b��X?�	�aeû*b�BH�EB .

Figure 6.40: IA. Figure 6.41: ILIE. Figure 6.42: ELIEs.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
S
e
c
o
n
d
)

Width of terminal cell

-2 -3
2 2 2 2 2 2 2 2 2

-4 -6-5 -10-7 -8 -9

Marching Cube

Interval Arithmetic

Affine Arithmetic

Implicit Linear Interval Estimations

Extended ILIEs

Figure 6.43: Calculation time with each polygonization result.

Cell Number (straddling cell / total cell)
Width Marching Cube IA AA ILIEs EILIEsý.þ�ÿ

130 / 4096 (
ý����

) 126 / 400 130 / 772 158 / 622 138 / 358ý.þ��
254 / 16384 (

ý���ÿ
) 250 / 820 254 / 1468 316 / 910 218 / 481ý.þ��

506 / 65536 (
ý����

) 502 / 1630 506 / 2350 442 / 1144 269 / 556ý.þ��
1010 / 262144 (

ý���	
) 1010 / 3982 717 / 4054 593 / 1378 393 / 745ý.þ�	

2018 / 1048576 (
ý���

) 2012 / 6514 2018 / 7138 928/ 1918 511 / 928ý.þ��
4030 / 4194304 (

ý����
) 4024 / 13060 2852 / 11161 1184 / 2314 709 / 1225ý.þ����

8053 / 25063 5699 / 20041 1630 / 3022 967 / 1606

52

”Cubic” formula [52]:
���������������dB$?�� ^ F0�ª?�	�aeb

.

Figure 6.44: IA. Figure 6.45: ILIE. Figure 6.46: ELIEs.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
S
e
c
o
n
d
)

Width of terminal cell

-2 -3
2 2 2 2 2 2 2 2 2

-4 -6-5 -10-7 -8 -9

Marching Cube

Interval Arithmetic

Affine Arithmetic

Implicit Linear Interval Estimations

Extended ILIEs

Figure 6.47: Calculation time with each polygonization result.

Cell Number (straddling cell / total cell)
Width Marching Cube IA AA ILIEs EILIEsý.þ�ÿ

198 / 4096 (
ý����

) 198 / 820 198 / 616 178 / 298 105 / 172ý.þ��
396 / 16384 (

ý���ÿ
) 396 / 1708 396 /1234 258 / 442 129 / 208ý.þ��

788 / 65536 (
ý����

) 788 / 3526 788 / 2446 332 / 562 189 / 298ý.þ��
1570 / 262144 (

ý���	
) 1570 / 7090 1570 / 4828 494 / 808 241 / 376ý.þ�	

3140 / 1048576 (
ý���

) 3140 / 14158 3140 / 9590 640 / 1036 346 / 538ý.þ��
6280 / 4194304 (

ý����
) 6280 / 28618 6280 / 18970 962 / 1510 498 / 760ý.þ����

12558 /57466 12558 / 37810 1402 / 2188 719 / 1090

53

”Pear” formula [52]:
�����������$�
�@� ö ?N����F
=G� ^ �E=º?Ä���

.

Figure 6.48: IA. Figure 6.49: ILIE. Figure 6.50: ELIEs.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
S
e
c
o
n
d
)

Width of terminal cell

-2 -3
2 2 2 2 2 2 2 2 2

-4 -6-5 -10-7 -8 -9
2
-11

Marching Cube

Interval Arithmetic

Affine Arithmetic

Implicit Linear Interval Estimations

Extended ILIEs

Figure 6.51: Calculation time with each polygonization result.

Cell Number (straddling cell / total cell)
Width Marching Cube IA AA ILIEs EILIEsý.þ�ÿ

90 / 4096 (
ý����

) 90 / 1747 90 / 1135 170 / 370 74 / 172ý.þ��
180 / 16384 (

ý���ÿ
) 180 / 5077 180 / 1759 214 / 466 112 / 238ý.þ��

361 / 65536 (
ý����

) 361 / 13954 361 / 2644 306 / 628 142 / 292ý.þ��
717 / 262144 (

ý���	
) 717 / 33595 717 / 4054 466 / 898 196 / 376ý.þ�	

1429 / 1048576 (
ý
���

) 1429 / 71716 1429 / 6538 614 / 1156 288 / 520ý.þ��
2852 / 4194304 (

ý
��
) 2852 / 147400 2852 / 11161 832 / 1522 347 / 610ý.þ����

5699 / 16777216 (
ý
�,ÿ

) 5699 / 298507 5699 / 20041 1202 / 2086 507 / 856

54

6.1.1 Three dimensional polygonization result
In this section, some polygonization experimental results are shown with Marching
Cube(MC), Interval Arithmetic(IA), Affine Arithmetic(AA), Implicit Linear Interval
Estimations(ILIEs) and Extended Implicit Linear Interval Estimations(EILIEs). All
image samples are made with the 0.625 fineness, and ILIEs and EILIEs criteteria in
adaptive calculation is fifth of required fineness,

	�a¬ú�4@b@D@bQac	
.

First three examples are tipical cases in, discrete surface, effective result with ILIE and
EILIEs, and ineffective result. Each three case, the function is defined in the top in
the left, and detialed time and cell number in total and terminal cell in each levels is
described in tables. * in the table means that those value is over 60 seconds or more.
Two line graph shows the increasing of computation time and total cell number, and
three cell and polygons result are shown in right pages.
After three results, four results are discribed with three cell and polygonization results
and line graph of computation time and total cell size.
Unfortunately ILIEs and EILIEs application is not implemented crack avoiding yet.
So, some polygonization result yields some crack.

55

Surfaces:
���������������R�
�OB�F0�dB7FP�*B$F2�O���Y?0	�acb6�OB��QB��*B�?0	�ac4@b

Time table (Second)
Width Marching Cube IA AA ILIEs EILIEsõ�Ì �

(0.5) 0.001708 0.003821 0.011546 0.032837 0.026972õ Ì B
(0.25) 0.009219 0.01860 0.035865 0.092322 0.084442õ Ì ^
(0.125) 0.069573 0.061045 0.125418 0.252649 0.251939õ Ì+ö
(0.0625) 0.504225 0.2221697 0.406078 0.876449 0.770895õ�ÌQÛ
(0.03125) * 0.810032 1.458436 2.142245 1.386609õ�ÌQÚ
(0.015625) * * 5.537661 3.395175 2.637882õ Ìd÷
(0.0078125) * * * 7.326404 5.089692

Cell Number (straddling cell / total cell)
Width Marching Cube IA AA ILIEs ELIEsõ�Ì �

112 / 512 (
õ.ù

) 112 / 512 112 / 512 112 / 512 112 / 351õ�Ì B
328 / 2388 (

õ � B
) 328 / 2388 328 / 1632 328 / 1324 368 / 1858õ Ì ^

1300 / 8156 (
õ � Û

) 1300 / 8156 1300 / 4880 1456 / 3816 1494 / 3466õ Ì+ö
5200 / 262144 (

õ � ø
) 5200 / 27756 5200 / 15688 6844 / 14148 5784 / 10480õ�ÌQÛ

* 20848 / 103972 20848 / 56400 19384/ 34952 11154 / 19258õ�ÌQÚ
* * 83704 / 209392 29932/ 54384 22034 / 36947õ Ìd÷
* * * 72136/ 121948 43412 / 71065

0

1

2

3

4

5

6

7

8

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (
S
e
c
o
n
d
)

Width of terminal cell

-2 -3
2 2 2 2 2 22

-4 -6-5-1 -7

Marching Cube

Interval Arithmetic

Affine Arithmetic

Implicit Linear Interval Estimations

Extended ILIEs

Figure 6.52: Line graph of calculation time
with each polygonization result.

0

50000

100000

150000

200000

250000

300000
Marching Cube

Interval Arithmetic

Affine Arithmetic

ILIEs

Extended ILIEs

T
o

ta
l

c
e

ll
 n

u
m

b
e

r
s

Width of terminal cell

-2 -3
2 2 2 2 2 22

-4 -6-5-1 -7

Figure 6.53: Percentage of straddling cells
in total cell.

56

Figure 6.54: MC, IA, AA cell. Figure 6.55: MC, IA, AA polygon.

Figure 6.56: ILIE cell. Figure 6.57: ILIE polygon.

Figure 6.58: EILIE cell. Figure 6.59: EILIE result.

57

Drop functions:
���������������$�
�O����B�F0�dBH��?
�>=_F����C�E=º?0��� ^

;

Time table (Second)
Width Marching Cube IA AA ILIEs EILIEsõ�Ì �

(0.5) 0.001264 0.001456 0.007228 0.016499 0.034700õ Ì B
(0.25) 0.007892 0.004382 0.020472 0.037061 0.037588õ Ì ^
(0.125) 0.063833 0.015316 0.052627 0.094670 0.098741õ Ì+ö
(0.0625) 0.483495 0.061301 0.160347 0.307814 0.132160õ�ÌQÛ
(0.03125) * 0.240768 0.558066 0.459210 0.340750õ�ÌQÚ
(0.015625) * 8.862401 2.175671 1.153318 0.584433õ Ìd÷
(0.0078125) * * * 1.959882 1.152714õ ÌQø
(0.00390625) * * * 4.167993 2.304613õ�ÌQù
(0.001953125) * * * 8.216114 5.988484

Cell Number (straddling cell / total cell)
Width Marching Cube IA AA ILIEs ELIEsõ Ì �

48 / 512 (
õ ù

) 48 / 260 48 / 428 48 / 288 52 / 176õ Ì B
152 / 4096 (

õ � B
) 152 / 708 152 / 1128 152 / 708 212 / 540õ�Ì ^

592 / 32768 (
õ � Û

) 592 / 2276 592 / 2692 708 / 1912 712 / 1492õ�Ì+ö
2296 / 262144 (

õ � ø
) 2296 / 7960 2296 / 7624 2772 / 5524 1084 / 2164õ ÌQÛ

* 9112 / 30248 9112 / 25376 4292 / 8436 2888 / 4908õ ÌQÚ
* 36544 / 120632 36544 / 91848 11896/ 20980 4924 / 8408õ�Ìd÷
* * * 20516/ 35568 10572 / 17256õ�ÌQø
* * * 44604/ 74320 22144 / 35400õ ÌQù
* * * 92884/ 151404 40804 / 64716

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (
S
e
c
o
n
d
)

Width of terminal cell

-2 -32 2 2 2 2 22
-4 -6-5-1 -7

2
-8 2

-90

2

4

6

8

10

Marching Cube

Interval Arithmetic

Affine Arithmetic

Implicit Linear Interval Estimations

Extended ILIEs

Figure 6.60: Line graph of calculation time
with each polygonization result.

0

50000

100000

150000

200000

250000

300000
Marching Cube

Interval Arithmetic

Affine Arithmetic

ILIEs

Extended ILIEs

Width of terminal cell

-2 -3
2 2 2 2 2 22

-4 -6-5-1 -7
2
-8 2

-9

T
o

ta
l
c
e
ll
 n

u
m

b
e
r
s

Figure 6.61: Percentage of straddling cells
in total cell.

58

Figure 6.62: MC, IA, AA cell. Figure 6.63: MC, IA, AA polygon result.

Figure 6.64: ILIE cell. Figure 6.65: ILIE Polygons.

Figure 6.66: EILIE cell. Figure 6.67: EILIE Polygons.

59

Double tourus functions:
���������������$�%�,�*��B6�>=A?��OB(��?2�dB��EB�F��*B�?0	�ac4@b

Time table (Second)
Width Marching Cube IA AA ILIEs EILIEsõ�Ì �

(0.5) 0.001579 0.002736 0.013534 0.052424 0.049948õ Ì B
(0.25) 0.009559 0.014891 0.102399 0.267190 0.176058õ Ì ^
(0.125) 0.067686 0.053017 0.482193 0.709181 0.448062õ Ì+ö
(0.0625) 0.506720 0.194284 1.125623 1.655844 1.221348õ�ÌQÛ
(0.03125) 3.806242 0.771984 2.851743 4.752474 2.997970õ�ÌQÚ
(0.015625) * 3.007264 8.61854 12.249875 5.942136

Cell Number (straddling cell / total cell)
Width Marching Cube IA AA ILIEs ELIEsõ Ì �

88 / 512 (
õ ù

) 88 / 344 88 / 512 88 / 512 88 / 512õ�Ì B
328 / 4096 (

õ � B
) 328 / 1744 328 / 4040 328 / 3928 332 / 2206õ�Ì ^

1456 / 32768 (
õ � Û

) 1456 / 5944 1456 / 20448 1464 / 10592 1680 / 5776õ Ì+ö
6192 / 262144 (

õ � ø
) 6192 / 22128 6192 / 47328 6404 / 25320 6702 / 15856õ ÌQÛ

25496/ 2097152 (
õ B �

) 25496 / 86136 25496 / 113184 30632 / 72528 20050 / 40048õ�ÌQÚ
* 103736/ 340992 103736 / 328336 99136 / 192872 42214 / 112886

Width of terminal cell

-2 -3
2 2 2 2 22

-4 -6-5-1

C
o

m
p
u

ta
ti

o
n

 t
im

e
 (
S
e
c
o
n
d
)

0

2

4

6

8

10

12
Marching Cube

Interval Arithmetic

Affine Arithmetic

Implicit Linear Interval Estimations

Extended ILIEs

Figure 6.68: Line graph of calculation time
with each polygonization result.

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (
S
e
c
o
n
d
)

Marching Cube

Interval Arithmetic

Affine Arithmetic

ILIEs

Extended ILIEs

Width of terminal cell

-2 -3
2 2 2 2 22

-4 -6-5-1

Figure 6.69: Percentage of straddling cells
in total cell.

60

Figure 6.70: MC, AA, IA cell. Figure 6.71: MC, AA, IA polygon.

Figure 6.72: ILIE cell. Figure 6.73: ILIE polgyon.

Figure 6.74: EILIE cell. Figure 6.75: EILIE polygon.

61

Tablet
���������������R�»=º?0� ö ?2�dBR?Ä�OB

Figure 6.76: MC, IA, AA cell. Figure 6.77: ILIEs cell. Figure 6.78: ELIEs cell.

Figure 6.79: MC, IA, AA. Figure 6.80: ILIEs polgyon. Figure 6.81: ELIEs polygon.

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (
S
e
c
o
n
d
)

Width of terminal cell

-2 -3
2 2 2 2 2 2 2 22

-4 -6-5-1 -7 -8 -90

1

2

3

4

5

6

7

8
Marching Cube

Interval Arithmetic

Affine Arithmetic

Implicit Linear Interval Estimations

Extended ILIEs

Figure 6.82: Calculation time.

0

50000

100000

150000

200000

250000

300000

Width of terminal cell

-2 -3
2 2 2 2 2 22

-4 -6-5-1 -7
2
-8

2
-9 2

-10

Marching Cube

Interval Arithmetic

Affine Arithmetic

ILIEs

Extended ILIEs

Figure 6.83: Total cell number.

62

mount & ball
�������������@�����*B�F0�dBR?�� ^ F0�

Figure 6.84: MC, IA, AA cell. Figure 6.85: ILIEs cell. Figure 6.86: ELIEs cell.

Figure 6.87: MC, IA, AA. Figure 6.88: ILIEs polygon. Figure 6.89: ELIEs polygon.

0

1

2

3

4

5

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (
S
e
c
o
n
d
)

Width of terminal cell

-2
-3

2 2 2 2 2 2 22
-4 -6-5-1 -7 -8

Marching Cube

Interval Arithmetic

Affine Arithmetic

Implicit Linear Interval Estimations

Extended ILIEs

Figure 6.90: Calculation time.

0

20000

40000

60000

80000

100000

Width of terminal cell

-2 -3
2 2 2 2 2 22

-4 -6-5-1 -7
2
-8

T
o

ta
l

c
e

ll
 n

u
m

b
e

r
s

Marching Cube

Interval Arithmetic

Affine Arithmetic

ILIEs

Extended ILIEs

Figure 6.91: Total cell number.

63

Cross Cap functions:
���������������$���*��B6���OB�F0�dB�FP�*B$FP���«FP�QB������dB�F���B_?S=G�

.

Figure 6.92: MC, IA, AA cell. Figure 6.93: ILIEs cell. Figure 6.94: ELIEs cell.

Figure 6.95: MC, IA, AA. Figure 6.96: ILIEs polygon. Figure 6.97: ELIEs polygon.

0

2

4

6

8

10

12
Marching Cube

Interval Arithmetic

Affine Arithmetic

Implicit Linear Interval Estimations

Extended ILIEs

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
S
e
c
o
n
d
)

Width of terminal cell

-2 -3
2 2 2 2 2 22

-4 -6-5-1 -7

Figure 6.98: Calculation time.

T
o

ta
l

c
e

ll
 n

u
m

b
e

r
s

Width of terminal cell

-2 -32 2 2 2 2 22
-4 -6-5-1 -70

50000

100000

150000

200000

250000

300000
Marching Cube

Interval Arithmetic

Affine Arithmetic

ILIEs

Extended ILIEs

Figure 6.99: Total cell number.

64

Cylinder formula:
���������������$�»=*ac	*B�?��OB�?2�QB

Figure 6.100: MC, IA, AA. Figure 6.101: ILIEs cell. Figure 6.102: ELIEs cell.

Figure 6.103: MC, IA, AA. Figure 6.104: ILIEs polygon. Figure 6.105: ELIEs polygon.

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
S
e
c
o
n
d
)

Width of terminal cell

-2 -3
2 2 2 2 2 2 22

-4 -6-5-1 -7 -9
2
-8

2
-100

2

4

6

8

10
Marching Cube

Interval Arithmetic

Affine Arithmetic

Implicit Linear Interval Estimations

Extended ILIEs

Figure 6.106: Calculation time.

0

100000

200000

300000

400000

500000
Marching Cube

Interval Arithmetic

Affine Arithmetic

ILIEs

Extended ILIEs

T
o

ta
l

c
e

ll
 n

u
m

b
e

r
s

Width of terminal cell

-2 -3
2 2 2 2 2 2

2
-4 -6-5-1

-7
2
-8 2

-9
2
-10

Figure 6.107: Total cell number.

65

6.2 Discussion
In this section, some discussion with each dimensional result in previous section are
described.

6.2.1 Discussion in two dimensional case
For considerating previous section results, we forcused on computation time, cell num-
ber and required memory each.[Computation time.

Marching Cube (MC) method’s time is increased about four times by previous
situation in all of our test case and this one is the absolutely slowest solution in
high accuracy case, but in low case, between 0.25 and 0.0625, this is the most
fastest types.
Next, Affine Arithmetic(AA) and Interval Arithtmetic(IA) results are compared;
such comparison has already been done by [52][26].
In most of our test cases, 7 cases in 8 all cases, Interval Arithmetic is faster than
Affine Arithmetic, and Affine Arithmetic is faster than Interval Arithmetic in
one complex formulations, Figure 6.21. So, it’s so hard to asseverate IA is faster
than AA, but it is possible to say that IA is normaly faster than AA. The reason
of computation time difference between IA and AA is derived from the basic
calculation simplicity in IA described in Chapter 4. IA simply calculate upper
and bottom limts in each claculation, and, on the other hand, AA need to more
complex calculation related with noise,

. In [52] results, AA’s computataion

takes five times time of IA. Therefore, in some result’s steps, IA’s calculation
time is half of AA.
After getting one consideration, IA generally faster than AA, Implicit Linear In-
terval Estimations(ILIEs) results are considered. Until the certain level, such as
0.015625, ILIEs is the slowest solution compared with AA, IA, and MC. How-
ever, ILIEs computation time is not increased as other methods. For all other
solutions, time increases geometrically, but ILIEs increasing speed is like arith-
metical progression. So, in all of our test cases, ILIEs computation time is stable
under 0.5 second, and slowest level zone, under 0.015625, ILIEs computation
time in our sample keeps under 0.1 second, and this is not so different from hu-
man interaction point of view.
Extended Implicit Linear Interval Estimations(EILIEs) computation time is not
so different from ILIEs time. Basically, EILIEs is a little faster than ILIEs, and
in some situation, EILIEs is a little slower than ILIEs. Fortunately, the difference
in slower case keeps under 0.01 seconds.[Cell number
Our results show total cell and terminal cell number. Simply thinking, total cell
number is related with the required memory for computing the function, and ter-
minal cell number is related with the result line segments numbers and those file
sizes. In detail discussion, MC cell required 28 bytes, IA and AA required 60
bytes, ILIEs and EILIEs required 100 bytes in each cells.

66

From the viewpoitns of total cells, MC is obviously worst situation, and IA is
also worse one. The required memory is increased as geometrical progression.
AA is better than IA in memory consumption points.
ILIEs memory consumption is abosultely better than conventional three solu-
tions. ILIEs memory requirement is increased as arithmetic progression.
In EILIEs case, memory consumption is fewer than ILIEs. At an average rate
of our result, two third parts of ILIEs memory is consumed for computing with
EILIEs. So, EILIEs is the best solution for avoiding extra memory consumption.

Next, terminal cell points is analyzed. In some case, terminal cell has two lines,
but it is not frequently. So, we think each terminal cell has one line segment.
MC, AA, and IA yields almost same number of segments and result numbers are
almost dobuled with decreasing the terminal cell size into half size. On the other
hand, ILIEs results is not increased as conventional three solution. In our result,
ILIEs semgents number in the minimum level is less than half of conventional
solution. In extremely low case, ILIEs terminal cell number is more than con-
ventional solution, but those differecnce is less than one hundred. For getting
the stable result numbers, ILIEs is the better solution, and EILIEs yields less
number results. In our result average, ELIEs results is two third parts of ILIEs.
Both situation, holding down memory consumption and result segment numbers,
EILIEs is the best choice.[accuracy
As described in Chapter 3, ILIEs and EILIEs yields good segments which in-
cluding lines. For explaining accuracy points, one example figure is shown in
below:

IA(0.25) EILIEs(0.25) EILIEs(0.01)

Amplification

Figure 6.108: The accuracy comparison between IA and EILIEs.

67

This is the typical case in accuracy comparison. Figure 6.108 shows two results
in IA and ELIEs in Cubic formula with 0.25 terminal cell width, and the right
image is the fine lines. ELIEs’s result is absolutely accuracy than IA. The reason
of this result is already mentioned in Chapter 3.2.3, all test cases use linear in-
terpolation for detecting vertex position, and absolutely accurate result is yidled
in narrow range case, as ILIEs and EILIEs. So, ILIEs and EILIEs yields more
accurate results than conventional three methods in any case.
Next, we discussed about ILIEs and EILIEs with Figure 6.1. From the defini-
tion, EILIEs yields tighter range than ILIEs. In the worst case, ELIEs’s segment
width is equal to ILIEs. First line in Figure 6.1 is the typical case in the narrow
range with EILIEs. Therefore, EILIEs is the best choice to get accuracy results
in each terminal cell size.

6.2.2 Discussion in three dimensional case
As described in prerequiisite, 6.1.1, our application is not implemented with cracks
solution. So, it is difficult to derive some conclusion related with ILIEs and EILIEs.
However, it is possilbe to get some deductions. In three dimensional case, we discuss
about accuracy, cell number, and computation time. After that we analysis[Cell number.

In all cases, EILIEs’s total cell and terminal cell number ascent is slower than
any other solutions. Especially, in complex formulation: Double torus and Cross
cap, EILIEs total cell is sixty percent of ILIEs.[Computation time.
EILIEs is the fastest plygonization technique in most tested cases, excepting
Double torus and Cross Cap. So, in simple mathematical formulation, EILIEs is
faster than three conventional solutioins, but in complex formulation with many
square terms, IA is the fastest solution. The reason for the difference is that
IA yields more precise results in square roots, and those value effects total cell
numbers. Total cell numbers effects the calculation number, and the important
point for getting faster result is to reduce the total numbers. In Double Torus and
Cross Cap, there are not much difference between IA and other solution. Besides
the cell number, IA is faster than AA, ILIEs, and EILIEs as described in Chapter
4. So, the difference of total cell number is not simply reflected the computation
time result.[Accuracy.
In three dimensional calculation, our application is not implemented for cracks,
and this effect some points in polygonization result. So, it is difficult to discuss
in polygonization result with comparing conventional solution and our solutions.
So, comparions with conventional polygonization are skipped. However, it is
possible to discuss ILIEs and EILIEs cell accuracy. In some test case, Drop and
Cross Cap, EILIEs cell result is more adaptive for polygonization results, and
this effect polygonization accuracy. So, it is possilble to deduce that EILIEs
generally derives some better adaptive cell decomposition result than ILIEs.

68

[topology.
Some topology based polygonization methods are suggested in [42] [43]. This
information is useful whether making a hole or connecting surfaces.

From the above analysis, we can conclude that EILIEs has a possibility to be good
polygonization, and simple Affine Arihtmetic is not suitable for some polygonization
computation.

69

Chapter 7

Conclusion

7.1 Summary
This thesis proposed two innovative Adaptive Robust polygonization algorithms of im-
plicit curve and surface, Implicit Linear Interval Estimations (ILIEs) and Extended
Implicit Liner Interval Estimations (EILIEs). Both algorithmes are based on octree
decomposition method with Affine Arithmetic calculation. Originally, ILIEs is sug-
gested for ray tracing in implicit surface or lines [53][66], and we implement it into
polygonzation technique. EILIEs is a extension of ILIEs; improved points are cell
pruning after intersection test with ILIEs and formulation of ILIEs with improving
Affine Arithmetic multiplication. ILIEs and EILIEs make it possible for some adap-
tive solutions; cell pruning, intersection tests, curvature analysis and adaptive vertex
calculation. Both methods hold down memory consumption, reduce polygonization re-
sult size, and at the same time increase accuracy, and improve performance. However,
a new type of crack problem presents itself for which this paper suggest one simple
solution, but we do not implement this solution, so our test case can not conclude our
case is the best, but we can get one new capability to improve polygonization with
implicit surface.

7.2 Conclusion
This paper suggests two methods for making implicit curves and surfaces with Implicit
Linear Interval Estimations (ILIEs) and Extended Implicit Linear Interval Estimations
(ELIEs).
In implicit curves, our method yields one of the ideal results in accuracy, memory con-
sumption and calculation time points. Our methods, especially ELIEs, are superior to
conventional decomposition solution as described Chapter 6.2.1.
In implicit surface, work is on going, because, in using cell pruning, another crack
problem appears, and we suggest a simple solution for preventing cracks, but it not im-
plemented. So, our implicit surface polygonization framework tests are not completed
yet.
However, our result shows one possibility to save memory consumption and get mod-
erate size polygon compared with conventional solution without any extra computation

70

which is never mentioned in other papers, and there are some possible to decrease the
computation time with implicit surface polygonization.
Finally, we conclude that this paper suggests close to optimal solution in polygoniza-
tion of implicit curve, and the first step for making ideal polygonization of implicit
surface.

7.3 Future Work
This thesis has suggested new polygonization framework for implicit curves and sur-
faces, and our method has some possibility to be better polygonization. So, some
future works listed in below are needed to improve it.[Crack prevention

As described in Chapter 3 and conclusion, our implementation is not finished to
preventing crack. We suggest the simplest solution for preventing crack in Chap-
ter 3.2.3, but we don’t conclude this solution is most suitable for our solution.
So, we need more discussion for crack avoiding solution with some references
[32][45][49][61][61][56][78].[Translator
In our research, we prepared the Affine Arithmetic method manually, but such
computation is usually done by a computer program. So, we need to implement
a translator. After that, additional measurements should be done with procedural
implicit functions.[polygon making improvement.
In our test case, exhaustive enumeration method’s polygonization[13][57] is
used. However, there are one good solution for making some edges and fea-
tures [61][61][56]. So, we need to implement it in our solution, for deriving
more good polygonization surface results.[Optimization
Some conventional polygonization methods produce equilateral polygons, re-
sulting in a better appearance. Our polynization method does not have such an
attribute. So, for comparing methods in total throughput, we would implement
some optimization idea into our method. Especially, we use cell based decom-
position, this type of polygonization results definitely have tiny cell. We also
would implement one algorithm to transact those cell [60][68][73].[Some procedurally definition Extension
We should implement some simple value judgment, inside, outside or on surface,
and it is possible extended non-manifold polygonization[25].[Robust solution extension.
We use Affine Arithmetic for function calculation, but Affine Arithmetic is not
suitable for some region split, such as if statement. It is possible to avoid those
problems by computation in each split range. However, we suggest to make
another solution for tracking error adapting range dividing.

71

References

[1] R. E. Wengert A simple automatic derivative evaluation program, Communica-
tions of the, ACM 7(8), 1964.

[2] R.E.Moore Interval Analysis. Prentice-Hall, 1966. Interval analysis, Prentice-
Hall, 1966.

[3] Robert H Dargel, Frank R. Loscalzo, Thomas H. Witt, Automatic Error Bounds on
Real Zeros of Rtional Functions, ACM Volume 9, Number 11, November, 1966.

[4] Allen Reiter, Programming Interval Arithmetic and Applications, Proceediings of
the 1967 Army NUumerical Analysis Conference.

[5] Yasuo Fujii, Kozo Ichida, Takeshi Kiyono, A Method for Finding the Greatest
Value of a Multivariable Function Using Interval Arithmetic, IPSJ Vol.18 No.11,
1977

[6] Geoff Wyvill, Craig McPheeters, Brian Wyvill, Data structure for soft objects,
The Visual Computer, Vol 2, 227-234, 1986

[7] Geoff Wyvill, Craig McPheeters, Brian Wyvill, Animating soft objects, The Visual
Computer, Vol 2, 234-242, 1986

[8] William E. Lorensen, Harve E. Cline, MARCHING CUBES: A HIGH RESOLU-
TION 3D SURFACE CONSTRUCTION ALGORITHM, SIGGRAPH 1987.

[9] Brian Von Herzen, Alan H. Barr Accurate Triangulations of Deformed, Intersect-
ing Surface, SIGGRAPH 1987.

[10] Andreas Griewank, On Automatic Differentiation, Mathematics and Computer
Scienece Division, November 1988.

[11] Jules Bloomenthal, Polygonization of Implicit Surfaces, Computer Aided Geo-
metric Design 341-355, 1988.

[12] Werner Rheinboldt On the computation of multi-dimensional solution manifolds
of parameterized equations, Numerische Mathematik, 53:165-182, 1988.

[13] Pasko A., Pilyugin V., Pokrovskiy V. Geometric modeling in the analysis of
trivariate functions, Computer & Graphics Vol 12, Nos 3/4 pp.455-465, 1988

72

[14] Max E. Jerrell, Function minimization and Automatic Differentiation Using C++,
OOPSLA October 1989,

[15] Devendra Kalra, Alan H. Barr, Guaranteed Ray Intersections with Implicit Sur-
faces, SIGGRAPH 1989,

[16] Luiz Henrique de Figueiredo, Jonas de Miranda Gomes, Demetri Terzopoulos,
Luiz Velho Physically-Based Methods for Polygonization of Implicit Surface In
Graphics Interface, page 250-257, 1992.

[17] Tom Duff, Interval Arithmetic and Recursive Subdivision for Implicit Function
and Constructive Solid Geometry ACM Computer Graphics 1992 (SIGGRAPH
1992).

[18] John M. Synder, Interval Analysis For Computer Graphics, SIGGRAPH 1992.

[19] Joao Luiz Dihl Comba, Jorge Stolfi, Affine Arithmetic and its Application to
Computer Graphics, Symposium on Computer Graphics and Image Processing
1993, (SIBGRAPI’93).

[20] John C. Hart, Ray Tracing Implicit Surfaces, SIGGRAPH 93 Modeling, Visual-
izing, and Animating Implicit Surfaces course notes

[21] C.W.AM. van Overveld and Brian Wyvill Shrinkwrap: an adaptive algorithm
for polygonizing an implicit surface, The University of Calgary, Department of
computer science, Research Report No. 93/514/19, March 1993.

[22] Jules Bloomenthal An Implicit Surface Polygonizer, Graphics GemsIV, New
York, Academic Press, 1994.

[23] Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and control
implicit surface, SIGGRAPH 1994.

[24] Marcus Vinicius Alivim Andrade, Joao Luiz Dihl Comba, Jorge Stolfi, Affine
Arithmetic, Presented at INTERVAL’94, St. Petersburg (Russia), March 5-10,
1994.

[25] Jules Bloomenthal and Keith Ferguson Polygonizaiton of Non-Manifold Implicit
Surface, SIGGRAPH 1995.

[26] Luiz Henrique de Figueiredo, Jorge Stolfi, Adaptive enumeration of implicit sur-
faces with affine arithmetic, Implicit Surface 1995.

[27] Luiz Velho Simple and Efficient Polygonization of Implicit Surface, Journal of
Graphics Tools, 1(24), pp.5-24, 1996.

[28] Andrea Bottino, Wim Nuij, Kees van Overveld, How to Shrinkwrap through a
Critical Point: an Algorithm for the Adaptive Triangulation of Iso-Surfaces with
Arbitrary Topology, Proceedings of IS’96 Conference, Eindhoven, September
1996.

73

[29] Luiz Henrique de Figueiredo, Jonas Gomes, Sampling implicit objects with
physically-based particle systems, Compute & Graphics 20 #3, 1996

[30] Luiz Henrique de Figueiredo, Surface intersection using affine arithmetic,
Graphics Interface 1996.

[31] Kazutoshi Yonekawa, Ken-ichi Komori, Toshiro Kutsuwa, A Geometric Modeler
by Using Spatial-Partitioning Representations, IPSJ Vol.37 No.1 1996.

[32] Raj Shekhar, Elias Fayyad, Roni Yagel, J.Fredrick Cornhill Octree-Based Deci-
mation of Marching Cubes Surfaces, Visualization 1996, pp335-342.

[33] Angela Rosch, Matthias Ruhl, Diemar Saupe, Interactive Visualization of Implicit
Surfaces with Singularities, EuroGraphics Volume 16, pp. 295-306, 1997.

[34] Barton T. Stander, John C. Hart, Guaranteeing the Topology of an Implicit Sur-
face Polygonization for Interactive Modeling, SIGGRAPH 1997.

[35] Nilo Stolte, Arie Kaufman, Discrete Implicit Surface Models using Interval
Arithmetics,
Second CGC Workshop on Computational Geometry, Durham, Duke University,
October 1997.

[36] Nilo Stolte, Arie Kaufman, Discrete Implicit Surface Models using Interval
Arithmetic, In Second CSG WorkShop, October 1997.

[37] Nilo Stolte, Rene Caubet, Comparison between Different Rasterization Methods
for Implicit Surfaces, Visualization and Modeling, chapter 10, pages 191-201,
April 1997.

[38] Hans-Christian Hege, Martin Seebab, Detlev Stalling, Malte zockler A General-
ized Marching Cubes Algorithm Based On Non-Binary Classifications, 1997.

[39] Wolfgang Heidrich, Philipp Slusallek, Hans-Peter Seidel, Sampling of Procedu-
ral Shadrs Using Affine Arithmetic, ACM Transactions on Graphics (TOG) archive
Volume 17, Issue 3, July 1998.

[40] Nilo Stolte, Arie Kaufman, Parallel Spatial Enumeration of Implicit Surfaces Us-
ing Interval Arithmetic for Octree generation and its direct Visualization, Implicit
Surface 1998.

[41] Affonso de Cusatis Junior, Luiz Henrique de Figueiredo, Marcelo Gattass, Inter-
val Methods for Ray Casting Implicit Surfaces with Affine Arithmetic, In process-
ing SIBGRAPH pp.65-77, 1999.

[42] John C. Hart Computational Topology for Shape Modeling, in Proc. of Shape
Modeling International 99, Aizu-Wakamatsu, Japan, March, 1999.

[43] John C. Hart, Using the CW-Complex to Represent the Topological Structure of
Implicit Surfaces and Solid, SIGGRAPH 1999.

74

[44] Luiz Velho, Luiz Henrique de Figueiredo, Jonas Gomes, A Unified Approach for
Hierarchical Adaptive Tesselation of Surfaces, ACM Graphics October 1999.

[45] R.Westermann, L. Kobbelt, T.Etrl Real-time Exploration of Regular Volume Data
by Adaptive Reconstruction of Iso-Surface, The Visual Computer, 15, pp.100-111,
1999

[46] V. Adzhiev, R. Cartwright, E. Fausett, A. Ossipov, A. Pasko, V. Savchenko, Hy-
perFun project: A framework for collaborative multidimensional F-rep modeling,
Implicit Surfaces ’99, Eurographics/ACM SIGGRAPH Workshop, J. Hughes and
C. Schlick (Eds.), pp. 59-69.

[47] Adrian Bowyer, Jakob Berchtold, David Elisenthal, Irina Voiculescu, Kevin
Wise, Interval Methods in Geometric Modeling, IEE Geometric Modeling and
Processing 2000.

[48] Irina Voiculescu, Jakob Berchtold, Adrian Bowyer, Ralph R. Martin, and Qi-
jiang Zhang Interval and Affine Arithmetic for Surface Location of Power- and
Bernstein-form Polynomials, IEE Geometric Modeling and Processing 2000.

[49] Ronald N. Perry, Sarah F. Frisken Kizamu: A System For Sculpting Digital Char-
acters, SIGGRAPH 2001, Technical Report 2001 TR2001-08

[50] Nilo Stolte, Arie Kaufman, Robust Hierarchical voxel Models for representation
and Interactive visualization of Implicit Surfaces in Spherical Interactive visual-
ization of Implicit surfaces in Spherical Coordinates, Graphical Models 2001.

[51] Tasso Karkanis, A.James Stewart, Curvature-Dependent Triangulation of Im-
plicit Surfaces IEEE, 2001.

[52] Helio Lopes, Joao Batista Oliveira, Luiz Henrique De Figueiredo, Robust Adap-
tive Approximation of Implicit Curbes, XIV Brazilian Symposium on Computer
Graphics and Image Processing (SIBGRAPHI’01) October 15 - 18, 2001.

[53] Katja Buehler, Fast and Reliable Plotting of Implicit Curves, Uncertainty in Ge-
ometric Computations; Joab Winkler, Mahesan Niranjan (eds.); Kluwer Academic
Publishers. pp. 15-28, 2002

[54] Tasso Karkanis, A. James Stewrt, High Quality, Curbature Dependent Triangula-
tion of Implicit Surfaces, IEEE Computer Graphics and Applications, 21(2):60-69,
(March 2001).

[55] Xikun Liang, Brian Wyvill, Hierarchical Implicit Surface Refinement, Computer
Graphics Internaional, 2001.

[56] Feif P. Kobbelt, Mario Botsch, Ulrich Schwanecke, Hans-Peter Seidel p Feature
Sensitive Surface Extraction from Volume Data, SIGGRAPH 2001

[57] Youichi Gotou, Interactive Modling and Visualization of F-rep Solids with an
Extendable User Interface, Master thesis in University of Aizu, 2002.

75

[58] Greg Turk, James F. O’Brien, Modelling with Implicit Surfaces that Interpolate,
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002, Pages 855-873.

[59] Huahao Shou, Ralph Matrin, Irina Voiculescu, Adrian Bowyer, Goujin Wang,
Affine Arithmetic in Matrix Form for Polynomial Evaluation and Algebraic Curve
Drawing, Progress in Natural Science 12 (1): pp. 77-81 January 2002.

[60] Yu. Ohtake and A. G¿ Belyaev Mesh optimization for polyonized isosurfaces,
Computer Graphics Forum(Eurographics 2001), 20(3):368-376, September 2001.

[61] Tao ju, Frank Losasso, Scott Schaefer, Joe Warren Dual Contouring of Hermite
Data, SIGGRAPH 2002

[62] Scott Schaefer, Joe Warren Dual Contouring:”The Secret Sauce”, Techinical
Report TR 02-408

[63] Ralph Martin, Huahao Shou, Irina Voiculescu, Adrian Bowye, Guojin Wang
Comparison of interval methods for plotting algebraic curves , Computer Aided
Geometric Design, Volume 19, Issue 7, July 2002, pp. 553-587.

[64] Adrian Bowyer, Ralph Martin, Huahao Shou, Irina Voiculescuk, Affine intervals
in a CSG geometric modeller, Proc. Uncertainty in Geometric computations ISBN
0-7923-7309, pp. 1-14.

[65] Huahao Shou, Ralph Matrin, Irina Voiculescu, Adrian Bowyer, Goujin Wang,
Affine Arithmetic and Bernstein Hull Methods for Algebraic Curve Drawing,
http://users.comlab.ox.ac.uk/irina.voiculescu/Publications/
Sheffield AA paper 2001.pdf, 2001.

[66] Katja Buhler, Implicit Linear Interval Estimations, Proceedings of the 18th
Spring Conference in Computer Graphics (SCCG’02); Budmerice, Slovakia;
ACM; 2002.

[67] Thomas Thebl, Torsten Moller, Meister Eduard Groller, Optimal Regular Volume
Sampling, IEEE visuallization 2001.

[68] Yutaka Ohtake, Alexander Belyaev, Alexander Pasko, Dynamic Mesh Optimiza-
tion jfor Polygonized Implicit Surfaces with Sharp Features. The Visual Computer
2002.

[69] K.Levinski, A.Sourin, Interactive Polygonization for function-based shpae mod-
elling, Eurographics 2002.

[70] Luiz Henrique de Figueiredo, Jorge Stolfi, Affine Arithmetic: Concepts and Ap-
plications, Numerical Algorithm 00: 1-13, 2003.

[71] Hamish Carr, Thomas Theubl, Torsten Moller, Isosurface on Optimal Regular
Samples, EUROGRAPHICS 2003.

[72] Luiz Henrique de Figueiredo, Jorge Stolfi, Luiz Velho, Approximating Para-
metric Curves With Strip Trees Using Affine Arithmetic, Eurographics volume 22
number 2 pp. 171-179, 2003.

76

[73] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, Hans-Peter Seidel,
Multi-level Partion of Unity Implicits, SIGGRAPH 2003.

[74] Bart Adams, Philip Dutre Interactive Boolean Operations on Surfel-Bounded
Solids,

[75] Mark Pauly, Richard Keiser, Leif P. Kobbelt, Markus Gross, Sahep Modeling
with Point-Sampled Geometry, SIGGRAPH 2003.

[76] Milos Hassan, An Efficient F-rep Visualizzation Framework, M.Sc. thesis, Fac-
ulty of Mathematics, Physics and Informatics, Com enius University, Bratislava,
Slovakia

[77] Libaa, http://www.nongnu.org/libaa/

[78] Jules Bloomenthal, Chandrajit Bajaj, Jim Blinn, Marie-Paule Cani-Gascuel, Alyn
Rockwood, Brian Wyvill, Geof Wyvill, Introduction to Implicit Surfaces, Morgan
Kaufmann, ISBN 1-55860-233-X, 1997.

77

